optimum/graphcore/models/groupbert/groupbert_convolution.py (49 lines of code) (raw):
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# RANDOM CHANGE
import torch
import torch.nn as nn
from optimum.utils import logging
logger = logging.get_logger(__name__)
class GroupBertConvolution(nn.Module):
"""
GroupBERT convolution module. Includes a GLU, group convolution, Swish, LayerNorm and
output projection.
"""
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.conv_group_size = config.conv_group_size
self.conv_kernel_size = config.conv_kernel_size
self.prenorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.glu = nn.Linear(self.hidden_size, 2 * self.hidden_size)
self.sigmoid = nn.Sigmoid()
self.groupconv = nn.Conv1d(
self.hidden_size,
self.hidden_size,
self.conv_kernel_size,
padding=int((self.conv_kernel_size - 1) / 2),
groups=int(self.hidden_size / self.conv_group_size),
)
self.conv_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.swish = nn.SiLU()
self.output_projection = nn.Linear(self.hidden_size, self.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def get_input_mask_from_attention_mask(self, attention_mask: torch.Tensor) -> torch.Tensor:
attention_mask = 1.0 - (attention_mask / (-10000.0))
input_mask = attention_mask[:, 0, :]
return input_mask
def forward(
self, input_tensor: torch.Tensor, attention_mask: torch.Tensor, training: bool = False
) -> torch.Tensor:
# Prenorm
hidden_states = self.prenorm(input_tensor)
# Gated Linear Unit
hidden_states = self.glu(hidden_states)
gates = hidden_states[..., : self.hidden_size]
values = hidden_states[..., self.hidden_size :]
gates = self.sigmoid(gates)
hidden_states = torch.mul(values, gates)
# Grouped convolution
input_mask = self.get_input_mask_from_attention_mask(attention_mask)
mask = torch.transpose(input_mask, 1, 2)
conv_input = torch.mul(hidden_states, mask)
conv_input = torch.transpose(conv_input, -1, -2)
conv_output = self.groupconv(conv_input)
conv_output = torch.transpose(conv_output, -1, -2)
hidden_states = torch.squeeze(conv_output, 2)
# Norm and activation functiin
hidden_states = self.conv_norm(hidden_states)
hidden_states = self.swish(hidden_states)
# Output projection
hidden_states = self.output_projection(hidden_states)
hidden_states = self.dropout(hidden_states)
return input_tensor + hidden_states