optimum/graphcore/models/groupbert/groupbert_ffn.py (35 lines of code) (raw):
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# RANDOM CHANGE
import torch
import torch.nn as nn
from transformers.activations import ACT2FN
from optimum.utils import logging
logger = logging.get_logger(__name__)
class GroupBertIntermediate(nn.Module):
"""
GroupBERT FFN intermediate layer is similar to original BERT, but includes
prenorm.
"""
def __init__(self, config):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class GroupBertOutput(nn.Module):
"""
GroupBERT FFN output layer is uses grouped matmul to reduce the parameter cound and compensates
input locality with an output projection layer, similar to attention module.
"""
def __init__(self, config):
super().__init__()
self.ffn_groups = config.ffn_groups
self.grouped_matmul = nn.Conv1d(
config.intermediate_size, config.hidden_size, 1, padding=0, groups=self.ffn_groups
)
self.dense_output_projection = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
# Grouped matmul using conv1d
hidden_states = torch.transpose(hidden_states, -1, -2)
hidden_states = self.grouped_matmul(hidden_states)
hidden_states = torch.transpose(hidden_states, -1, -2)
# Output projection
hidden_states = self.dense_output_projection(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states + input_tensor