optimum/graphcore/models/roberta/modeling_roberta.py (210 lines of code) (raw):
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import poptorch
import torch
from torch.nn import CrossEntropyLoss
from transformers import (
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
)
from transformers.modeling_outputs import MaskedLMOutput, QuestionAnsweringModelOutput
from optimum.utils import logging
from ...modeling_utils import (
OnehotGather,
PipelineMixin,
SerializedEmbedding,
SerializedLinear,
get_layer_ipu,
outline_attribute,
recomputation_checkpoint,
register,
)
logger = logging.get_logger(__name__)
class RobertaPipelineMixin(PipelineMixin):
def parallelize(self):
"""
Transform the Roberta model body to run in an IPU pipeline.
- Adds pipeline stages to the model
- (If enabled) Replaces the word embedding with a SerializedEmbedding
- Adds recomputation checkpoints
"""
super().parallelize()
logger.info("-------------------- Device Allocation --------------------")
logger.info("Embedding --> IPU 0")
if self.ipu_config.embedding_serialization_factor > 1:
self.roberta.embeddings.word_embeddings = SerializedEmbedding.from_model(
self.roberta.embeddings.word_embeddings, self.ipu_config.embedding_serialization_factor
)
self.roberta.embeddings = poptorch.BeginBlock(self.roberta.embeddings, "Embedding", ipu_id=0)
hs = outline_attribute(self.roberta.embeddings.LayerNorm, "embedding")
self._hooks.extend(hs)
layer_ipu = get_layer_ipu(self.ipu_config, self.roberta.encoder.layer)
for index, layer in enumerate(self.roberta.encoder.layer):
ipu = layer_ipu[index]
if self.ipu_config.recompute_checkpoint_every_layer and index != self.config.num_hidden_layers - 1:
h = recomputation_checkpoint(layer)
self._hooks.append(h)
self.roberta.encoder.layer[index] = poptorch.BeginBlock(layer, f"Encoder{index}", ipu_id=ipu)
logger.info(f"Encoder {index:<2} --> IPU {ipu}")
return self
def deparallelize(self):
"""
Undo the changes to the model done by `parallelize`.
You should call this before doing `save_pretrained` so that the `model.state_dict` is
fully compatible with `transformers.RobertaForSequenceClassification`.
"""
super().deparallelize()
# Deserialize the serialized word embedding
if self.ipu_config.embedding_serialization_factor > 1:
self.roberta.embeddings.word_embeddings = self.roberta.embeddings.word_embeddings.to_model()
return self
@register(RobertaForMaskedLM)
class PipelinedRobertaForMaskedLM(RobertaForMaskedLM, PipelineMixin):
"""
RobertaForMaskedLM transformed to run in an IPU pipeline.
Recommended usage:
```
model = PipelinedRobertaForMaskedLM(config).parallelize().half()
```
"""
def __init__(self, config):
super().__init__(config)
self.gather_indices = OnehotGather()
def parallelize(self):
"""
Transform the model to run in an IPU pipeline.
- Adds pipeline stages to the model
- (If enabled) Replaces the word embedding projection with a SerializedLinear layer
- Adds recomputation checkpoints
"""
super().parallelize()
if self.ipu_config.embedding_serialization_factor > 1:
self.lm_head.decoder = SerializedLinear.from_model(
self.lm_head.decoder, self.ipu_config.embedding_serialization_factor
)
self.tie_weights()
logger.info("-------------------- Device Allocation --------------------")
logger.info("Embedding --> IPU 0")
self.roberta.embeddings = poptorch.BeginBlock(self.roberta.embeddings, "Embedding", ipu_id=0)
hs = outline_attribute(self.roberta.embeddings.LayerNorm, "embedding")
self._hooks.extend(hs)
layer_ipu = get_layer_ipu(self.ipu_config, self.roberta.encoder.layer)
for index, layer in enumerate(self.roberta.encoder.layer):
ipu = layer_ipu[index]
if self.ipu_config.recompute_checkpoint_every_layer:
h = recomputation_checkpoint(layer)
self._hooks.append(h)
self.roberta.encoder.layer[index] = poptorch.BeginBlock(layer, f"Encoder{index}", ipu_id=ipu)
logger.info(f"Encoder {index:<2} --> IPU {ipu}")
logger.info("LM Head --> IPU 0")
self.lm_head = poptorch.BeginBlock(self.lm_head, "LM Head", ipu_id=0)
logger.info("-----------------------------------------------------------")
return self
def deparallelize(self):
"""
Undo the changes to the model done by `parallelize`.
You should call this before doing `save_pretrained` so that the `model.state_dict` is
compatible with the original model.
"""
super().deparallelize()
if isinstance(self.lm_head.decoder, SerializedLinear):
self.lm_head.decoder = self.lm_head.decoder.to_model()
self.tie_weights()
return self
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.training:
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if hasattr(self.config, "max_num_masked_tokens"):
# Select only the masked tokens for the classifier
labels, positions = torch.topk(labels, k=self.config.max_num_masked_tokens, dim=1)
sequence_output = self.gather_indices(sequence_output, positions)
prediction_scores = self.lm_head(sequence_output)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
# When training only return the loss
if return_dict:
return MaskedLMOutput(loss=masked_lm_loss)
else:
return (masked_lm_loss,)
else:
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
return_dict=return_dict,
)
@register(RobertaForSequenceClassification)
class PipelinedRobertaForSequenceClassification(RobertaForSequenceClassification, RobertaPipelineMixin):
"""
RobertaForSequenceClassificiation transformed to run in an IPU pipeline.
Recommended usage:
```
model = PipelinedRobertaForSequenceClassification(config).parallelize().half()
```
"""
def parallelize(self):
super().parallelize()
last_ipu = self.ipu_config._ipus_per_replica - 1
logger.info(f"Classifier Output --> IPU {last_ipu}")
self.classifier = poptorch.BeginBlock(self.classifier, "Classifier Output", ipu_id=last_ipu)
logger.info("-----------------------------------------------------------")
return self
@register(RobertaForMultipleChoice)
class PipelinedRobertaForMultipleChoice(RobertaForMultipleChoice, RobertaPipelineMixin):
"""
RobertaForMultipleChoice transformed to run in an IPU pipeline.
Recommended usage:
```
model = PipelinedRobertaForMultipleChoice(config).parallelize().half()
```
"""
def parallelize(self):
super().parallelize()
last_ipu = self.ipu_config._ipus_per_replica - 1
logger.info(f"Classifier Output --> IPU {last_ipu}")
self.classifier = poptorch.BeginBlock(self.classifier, "Classifier Output", ipu_id=last_ipu)
logger.info("-----------------------------------------------------------")
return self
@register(RobertaForTokenClassification)
class PipelinedRobertaForTokenClassification(RobertaForTokenClassification, RobertaPipelineMixin):
"""
RobertaForTokenClassification transformed to run in an IPU pipeline.
Recommended usage:
```
model = PipelinedRobertaForTokenClassification(config).parallelize().half()
```
"""
def parallelize(self):
super().parallelize()
last_ipu = self.ipu_config._ipus_per_replica - 1
logger.info(f"Classifier Output --> IPU {last_ipu}")
self.classifier = poptorch.BeginBlock(self.classifier, "Classifier Output", ipu_id=last_ipu)
logger.info("-----------------------------------------------------------")
return self
@register(RobertaForQuestionAnswering)
class PipelinedRobertaForQuestionAnswering(RobertaForQuestionAnswering, RobertaPipelineMixin):
"""
RobertaForQuestionAnswering transformed to run in an IPU pipeline.
Recommended usage:
```
model = PipelinedRobertaForQuestionAnswering(config).parallelize().half()
```
"""
def parallelize(self):
super().parallelize()
last_ipu = self.ipu_config._ipus_per_replica - 1
logger.info(f"QA Outputs --> IPU {last_ipu}")
self.qa_outputs = poptorch.BeginBlock(self.qa_outputs, "QA Outputs", ipu_id=last_ipu)
logger.info("-----------------------------------------------------------")
return self
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output = super().forward(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
start_positions=start_positions,
end_positions=end_positions,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if start_positions is not None and end_positions is not None:
output = (poptorch.identity_loss(output[0], reduction="none"),) + output[1:]
return output