optimum/graphcore/models/vit/modeling_vit.py (26 lines of code) (raw):

# Copyright 2021 The HuggingFace Team. All rights reserved. # Copyright (c) 2021 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import poptorch import transformers from optimum.utils import logging from ...modeling_utils import PipelineMixin, get_layer_ipu, recomputation_checkpoint, register logger = logging.get_logger(__name__) @register(transformers.ViTForImageClassification) class PipelinedViTForImageClassification(transformers.ViTForImageClassification, PipelineMixin): def parallelize(self): super().parallelize() logger.info("---------- Device Allocation -----------") logger.info("Embedding --> IPU 0") self.vit.embeddings = poptorch.BeginBlock(self.vit.embeddings, "Embedding", ipu_id=0) layer_ipu = get_layer_ipu(self.ipu_config, self.vit.encoder.layer) for index, layer in enumerate(self.vit.encoder.layer): if self.ipu_config.recompute_checkpoint_every_layer: # Put checkpoints on every encoder layer h = recomputation_checkpoint(layer) self._hooks.append(h) ipu = layer_ipu[index] logger.info(f"Encoder {index:<2} --> IPU {ipu}") self.vit.encoder.layer[index] = poptorch.BeginBlock(layer, f"Encoder{index}", ipu_id=ipu) last_ipu = self.ipu_config._ipus_per_replica - 1 logger.info(f"Head --> IPU {last_ipu}") logger.info("---------------------------------------") self.vit.layernorm = poptorch.BeginBlock(self.vit.layernorm, "LayerNorm", ipu_id=last_ipu) self.classifier = poptorch.BeginBlock(self.classifier, "Classifier", ipu_id=last_ipu) return self