optimum/graphcore/trainer_utils.py (32 lines of code) (raw):

# Copyright 2021 The HuggingFace Team. All rights reserved. # Copyright (c) 2023 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import numpy as np import poptorch import torch from optimum.utils import logging logger = logging.get_logger(__name__) class _WorkerInit: def __init__(self, seed): self.seed = seed def __call__(self, worker_id): np.random.seed((self.seed + worker_id) % np.iinfo(np.uint32).max) def to_poptorch_dataloader(for_training=False): def method_wrapper(func): def wrapper(*args, **kwargs): self = args[0] poptorch_specific_kwargs = { # Not dropping last will end up causing NaN during training if the combined batch size does not divide the number of steps "drop_last": True if for_training else self.args.dataloader_drop_last, # TODO: how to handle this case # "auto_distributed_partitioning": not isinstance(train_dataset, torch.utils.data.IterableDataset), "mode": self.args.dataloader_mode, "worker_init_fn": _WorkerInit(self.args.seed), } opts = self.opts if for_training else self.eval_opts orig_init = poptorch.DataLoader.__init__ partial_init = functools.partialmethod(poptorch.DataLoader.__init__, opts, **poptorch_specific_kwargs) poptorch.DataLoader.__init__ = partial_init orig_dataloader = torch.utils.data.DataLoader torch.utils.data.DataLoader = poptorch.DataLoader res = func(*args, **kwargs) poptorch.DataLoader.__init__ = orig_init torch.utils.data.DataLoader = orig_dataloader return res return wrapper return method_wrapper