optimum/graphcore/trainer_utils.py (32 lines of code) (raw):
# Copyright 2021 The HuggingFace Team. All rights reserved.
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import numpy as np
import poptorch
import torch
from optimum.utils import logging
logger = logging.get_logger(__name__)
class _WorkerInit:
def __init__(self, seed):
self.seed = seed
def __call__(self, worker_id):
np.random.seed((self.seed + worker_id) % np.iinfo(np.uint32).max)
def to_poptorch_dataloader(for_training=False):
def method_wrapper(func):
def wrapper(*args, **kwargs):
self = args[0]
poptorch_specific_kwargs = {
# Not dropping last will end up causing NaN during training if the combined batch size does not divide the number of steps
"drop_last": True if for_training else self.args.dataloader_drop_last,
# TODO: how to handle this case
# "auto_distributed_partitioning": not isinstance(train_dataset, torch.utils.data.IterableDataset),
"mode": self.args.dataloader_mode,
"worker_init_fn": _WorkerInit(self.args.seed),
}
opts = self.opts if for_training else self.eval_opts
orig_init = poptorch.DataLoader.__init__
partial_init = functools.partialmethod(poptorch.DataLoader.__init__, opts, **poptorch_specific_kwargs)
poptorch.DataLoader.__init__ = partial_init
orig_dataloader = torch.utils.data.DataLoader
torch.utils.data.DataLoader = poptorch.DataLoader
res = func(*args, **kwargs)
poptorch.DataLoader.__init__ = orig_init
torch.utils.data.DataLoader = orig_dataloader
return res
return wrapper
return method_wrapper