optimum/habana/transformers/models/deepseek_v2/modeling_deepseek_v2.py [2157:2232]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        num_logits_to_keep=None,
        token_idx=None,
        **kwargs,
    ):
        reuse_cache = kwargs.get("reuse_cache")
        bucket_internal = kwargs.get("bucket_internal")

        if past_key_values is not None:
            if token_idx is not None:
                idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1
                input_ids = torch.index_select(input_ids, 1, idx)
            else:
                if inputs_embeds is not None:  # Exception 1
                    input_ids = input_ids[:, -cache_position.shape[0] :]
                elif (
                    input_ids.shape[1] != cache_position.shape[0]
                ):  # Default case (the "else", a no op, is Exception 2)
                    input_ids = input_ids[:, cache_position]
        elif (reuse_cache or bucket_internal) and token_idx is not None:
            # KV cache is pre allocated with reuse cache or will be padded with bucket internal
            # hence for the 1st token we can slice the inputs till token idx for the fwd pass.
            input_ids = input_ids[:, :token_idx]
            attention_mask = attention_mask[:, :token_idx]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                if token_idx is not None:
                    position_ids = torch.index_select(position_ids, 1, token_idx - 1)
                else:
                    position_ids = position_ids[:, -input_ids.shape[1] :]

        # keep cache_position implementation as None for HPU
        cache_position = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}

        if num_logits_to_keep is not None:
            model_inputs["num_logits_to_keep"] = num_logits_to_keep

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "token_idx": token_idx,
                "trim_logits": kwargs.get("trim_logits"),
                "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"),
                "reuse_cache": reuse_cache,
                "use_flash_attention": kwargs.get("use_flash_attention"),
                "flash_attention_recompute": kwargs.get("flash_attention_recompute"),
                "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"),
                "flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"),
                "valid_sequence_lengths": kwargs.get("valid_sequence_lengths"),
                "cache_idx": kwargs.get("cache_idx"),
                "lazy_mode": kwargs.get("lazy_mode"),
                "num_virtual_tokens": kwargs.get("num_virtual_tokens"),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



optimum/habana/transformers/models/qwen2_moe/modeling_qwen2_moe.py [1148:1223]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        num_logits_to_keep=None,
        token_idx=None,
        **kwargs,
    ):
        reuse_cache = kwargs.get("reuse_cache")
        bucket_internal = kwargs.get("bucket_internal")

        if past_key_values is not None:
            if token_idx is not None:
                idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1
                input_ids = torch.index_select(input_ids, 1, idx)
            else:
                if inputs_embeds is not None:  # Exception 1
                    input_ids = input_ids[:, -cache_position.shape[0] :]
                elif (
                    input_ids.shape[1] != cache_position.shape[0]
                ):  # Default case (the "else", a no op, is Exception 2)
                    input_ids = input_ids[:, cache_position]
        elif (reuse_cache or bucket_internal) and token_idx is not None:
            # KV cache is pre allocated with reuse cache or will be padded with bucket internal
            # hence for the 1st token we can slice the inputs till token idx for the fwd pass.
            input_ids = input_ids[:, :token_idx]
            attention_mask = attention_mask[:, :token_idx]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                if token_idx is not None:
                    position_ids = torch.index_select(position_ids, 1, token_idx - 1)
                else:
                    position_ids = position_ids[:, -input_ids.shape[1] :]

        # keep cache_position implementation as None for HPU
        cache_position = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}

        if num_logits_to_keep is not None:
            model_inputs["num_logits_to_keep"] = num_logits_to_keep

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "token_idx": token_idx,
                "trim_logits": kwargs.get("trim_logits"),
                "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"),
                "reuse_cache": reuse_cache,
                "use_flash_attention": kwargs.get("use_flash_attention"),
                "flash_attention_recompute": kwargs.get("flash_attention_recompute"),
                "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"),
                "flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"),
                "valid_sequence_lengths": kwargs.get("valid_sequence_lengths"),
                "cache_idx": kwargs.get("cache_idx"),
                "lazy_mode": kwargs.get("lazy_mode"),
                "num_virtual_tokens": kwargs.get("num_virtual_tokens"),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



