in optimum/habana/transformers/trainer.py [0:0]
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
"""
Will save the model, so you can reload it using `from_pretrained()`.
Will only save from the main process.
"""
if output_dir is None:
output_dir = self.args.output_dir
if self.is_fsdp_enabled:
if "FULL_STATE_DICT" in str(self.accelerator.state.fsdp_plugin.state_dict_type):
state_dict = self.accelerator.get_state_dict(self.model)
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
elif self.is_deepspeed_enabled:
try:
state_dict = self.accelerator.get_state_dict(self.deepspeed)
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
except ValueError:
logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use"
" zero_to_fp32.py to recover weights"
)
if self.args.should_save:
self._save(output_dir, state_dict={})
# remove the dummy state_dict
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
accept_exclude_frozen_parameters = "exclude_frozen_parameters" in set(
inspect.signature(self.model_wrapped.save_checkpoint).parameters.keys()
)
if accept_exclude_frozen_parameters and _is_peft_model(self.model):
self.model_wrapped.save_checkpoint(output_dir, exclude_frozen_parameters=True)
else:
self.model_wrapped.save_checkpoint(output_dir)
elif self.args.should_save:
self._save(output_dir)
# Push to the Hub when `save_model` is called by the user.
if self.args.push_to_hub and not _internal_call:
self.push_to_hub(commit_message="Model save")