optimum/habana/distributed/tensorparallel.py (63 lines of code) (raw):
# Copyright 2024 The Foundation Model Stack Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modified from its original version.
# The original version can be found at https://github.com/foundation-model-stack/foundation-model-stack
import torch
import torch._inductor.ir as ir
import torch._inductor.lowering as lowering
import torch.distributed as dist
from torch import nn
# Workaround to overcome the accuracy/output correctnes issue in torch.compile all_reduce for batch sizes greater than 124.
# This is a temporary fix and needs to be addressed properly in future updates.
def disable_compiler(fn):
if hasattr(torch, "compiler") and hasattr(torch.nn.Module, "compile"):
return torch.compiler.disable(fn)
return fn
def apply_colwise_tp(par_mod: nn.Linear, mod: nn.Linear, world_size, rank):
# Divide the weight matrix along the last dimension.
output_size_per_partition = mod.out_features // world_size
with torch.no_grad():
par_mod.weight.copy_(torch.split(mod.weight, output_size_per_partition, dim=0)[rank])
if par_mod.bias is not None:
par_mod.bias.copy_(torch.split(mod.bias, output_size_per_partition)[rank])
def apply_rowwise_tp(par_mod: nn.Linear, mod: nn.Linear, world_size, rank):
# Divide the weight matrix along the last dimension.
output_size_per_partition = mod.in_features // world_size
with torch.no_grad():
par_mod.weight.copy_(torch.split(mod.weight, output_size_per_partition, dim=1)[rank])
if par_mod.bias is not None:
if rank == 0:
par_mod.bias.copy_(mod.bias)
else:
par_mod.bias.zero_()
def apply_embedding_tp(par_mod: nn.Embedding, mod: nn.Embedding, world_size, rank):
# Divide the weight matrix along the last dimension.
output_size_per_partition = mod.embedding_dim // world_size
with torch.no_grad():
par_mod.weight.copy_(torch.split(mod.weight, output_size_per_partition, dim=1)[rank])
## Fixes for PT 2.2 collectives until PT 2.3 is released
# Fix 1: https://github.com/pytorch/pytorch/issues/121311
def get_volatile_reads_fixed(self):
inp = self.inputs[0]
if isinstance(inp, ir._CollectiveKernel):
# Out-of-place single-output
return [inp.inputs[0]]
elif isinstance(inp, ir.MultiOutput):
# Out-of-place multi-output
coll = inp.inputs[0]
if isinstance(coll, ir._CollectiveKernel):
_, idx = inp.indices[0]
return [coll.inputs[idx]]
return [] # e.g. regular FallbackKernel
else:
# In-place requires no additional deps handling for volatile
# reads since the inputs are mutated.
return []
ir._WaitKernel.get_volatile_reads = get_volatile_reads_fixed
# Fix 2: These are fixed already in nightlies and will be in 2.3
for overload in torch.ops._c10d_functional.all_reduce.overloads():
other_fn = getattr(torch.ops._c10d_functional.all_reduce, overload)
if other_fn in lowering.lowerings:
del lowering.lowerings[other_fn]
@disable_compiler
def _all_reduce(input_: torch.Tensor) -> torch.Tensor:
"""All-reduce the input tensor across model parallel group."""
world_size = dist.get_world_size()
if world_size == 1:
return input_
# Starting PT 2.3, we can go back to funcol.all_reduce
return torch.ops._c10d_functional.wait_tensor(torch.ops._c10d_functional.all_reduce(input_, "sum", "default"))
class _ReduceFromModelParallelRegion(torch.autograd.Function):
"""All-reduce the input from the model parallel region."""
@staticmethod
def symbolic(graph, input_):
return _all_reduce(input_)
@staticmethod
def forward(ctx, input_):
return _all_reduce(input_)
@staticmethod
def backward(ctx, grad_output):
return grad_output
def reduce_from_tensor_model_parallel_region(input_):
return _ReduceFromModelParallelRegion.apply(input_)