optimum/habana/distributed/tp.py (64 lines of code) (raw):
# Copyright 2024 The Foundation Model Stack Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modified from its original version.
# The original version can be found at https://github.com/foundation-model-stack/foundation-model-stack
import itertools
from abc import ABCMeta, abstractmethod
from typing import List
import torch
import torch.nn as nn
from torch.distributed.distributed_c10d import ProcessGroup
from .tensorparallel import (
apply_colwise_tp,
apply_embedding_tp,
apply_rowwise_tp,
)
class TPModule(nn.Module, metaclass=ABCMeta):
"""
This is an abstract class that any nn.Module can implement to enable
Tensor Parallel. On top of inheriting from this class, the TP module
will have to implement list_colwise_weights, list_rowwise_weights,
list_embedding_weights, and import_module for their relevant weights.
Finally, the module must call setup_tp at the end of their __init__
function. See examples in attention.py, feedforward.py and embedding.py
"""
rank: int
world_size: int
def setup_tp(self, rank: int, world_size: int) -> None:
self.rank = rank
self.world_size = world_size
def colwise_param_names(self) -> List[str]:
return []
def rowwise_param_names(self) -> List[str]:
return []
def embedding_param_names(self) -> List[str]:
return []
@staticmethod
@abstractmethod
def import_module(module, group: ProcessGroup):
pass
def import_weights(self, module: nn.Module):
for weight in self.colwise_param_names():
apply_colwise_tp(
getattr(self, weight),
getattr(module, weight),
self.world_size,
self.rank,
)
for weight in self.rowwise_param_names():
apply_rowwise_tp(
getattr(self, weight),
getattr(module, weight),
self.world_size,
self.rank,
)
for weight in self.embedding_param_names():
apply_embedding_tp(
getattr(self, weight),
getattr(module, weight),
self.world_size,
self.rank,
)
tp_sharded_modules = list(
itertools.chain(
self.colwise_param_names(),
self.rowwise_param_names(),
self.embedding_param_names(),
)
)
with torch.no_grad():
for mod_name, module in self.named_children():
if mod_name not in tp_sharded_modules:
for param_name, param in module.named_parameters(recurse=False):
param.copy_(
getattr(getattr(module, mod_name), param_name),
non_blocking=True,
)