optimum/habana/distributed/tp.py (64 lines of code) (raw):

# Copyright 2024 The Foundation Model Stack Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file has been modified from its original version. # The original version can be found at https://github.com/foundation-model-stack/foundation-model-stack import itertools from abc import ABCMeta, abstractmethod from typing import List import torch import torch.nn as nn from torch.distributed.distributed_c10d import ProcessGroup from .tensorparallel import ( apply_colwise_tp, apply_embedding_tp, apply_rowwise_tp, ) class TPModule(nn.Module, metaclass=ABCMeta): """ This is an abstract class that any nn.Module can implement to enable Tensor Parallel. On top of inheriting from this class, the TP module will have to implement list_colwise_weights, list_rowwise_weights, list_embedding_weights, and import_module for their relevant weights. Finally, the module must call setup_tp at the end of their __init__ function. See examples in attention.py, feedforward.py and embedding.py """ rank: int world_size: int def setup_tp(self, rank: int, world_size: int) -> None: self.rank = rank self.world_size = world_size def colwise_param_names(self) -> List[str]: return [] def rowwise_param_names(self) -> List[str]: return [] def embedding_param_names(self) -> List[str]: return [] @staticmethod @abstractmethod def import_module(module, group: ProcessGroup): pass def import_weights(self, module: nn.Module): for weight in self.colwise_param_names(): apply_colwise_tp( getattr(self, weight), getattr(module, weight), self.world_size, self.rank, ) for weight in self.rowwise_param_names(): apply_rowwise_tp( getattr(self, weight), getattr(module, weight), self.world_size, self.rank, ) for weight in self.embedding_param_names(): apply_embedding_tp( getattr(self, weight), getattr(module, weight), self.world_size, self.rank, ) tp_sharded_modules = list( itertools.chain( self.colwise_param_names(), self.rowwise_param_names(), self.embedding_param_names(), ) ) with torch.no_grad(): for mod_name, module in self.named_children(): if mod_name not in tp_sharded_modules: for param_name, param in module.named_parameters(recurse=False): param.copy_( getattr(getattr(module, mod_name), param_name), non_blocking=True, )