optimum/habana/distributed/tp_wrapping.py (25 lines of code) (raw):

# Copyright 2024 The Foundation Model Stack Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file has been modified from its original version. # The original version can be found at https://github.com/foundation-model-stack/foundation-model-stack from torch import nn from torch.distributed.distributed_c10d import ProcessGroup from ..transformers.models.llama.modeling_llama import ( GaudiLlamaAttention, GaudiLlamaMLP, TPGaudiLlamaAttention, TPGaudiLlamaMLP, ) def _tp_wrapped(module: nn.Module, layer: int, group: ProcessGroup): if hasattr(module, "to_tp"): return module.to_tp(group) elif isinstance(module, GaudiLlamaAttention): return TPGaudiLlamaAttention.import_module(module, layer, group) elif isinstance(module, GaudiLlamaMLP): return TPGaudiLlamaMLP.import_module(module, group) else: return module def apply_tp(model: nn.Module, layer_idx: int, group: ProcessGroup): wrapped = _tp_wrapped(model, layer_idx, group) if wrapped is not model: return wrapped for name, layer in model.named_children(): tp_layer = apply_tp(layer, layer_idx, group) setattr(model, name, tp_layer) return model