optimum/habana/distributed/tp_wrapping.py (25 lines of code) (raw):
# Copyright 2024 The Foundation Model Stack Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modified from its original version.
# The original version can be found at https://github.com/foundation-model-stack/foundation-model-stack
from torch import nn
from torch.distributed.distributed_c10d import ProcessGroup
from ..transformers.models.llama.modeling_llama import (
GaudiLlamaAttention,
GaudiLlamaMLP,
TPGaudiLlamaAttention,
TPGaudiLlamaMLP,
)
def _tp_wrapped(module: nn.Module, layer: int, group: ProcessGroup):
if hasattr(module, "to_tp"):
return module.to_tp(group)
elif isinstance(module, GaudiLlamaAttention):
return TPGaudiLlamaAttention.import_module(module, layer, group)
elif isinstance(module, GaudiLlamaMLP):
return TPGaudiLlamaMLP.import_module(module, group)
else:
return module
def apply_tp(model: nn.Module, layer_idx: int, group: ProcessGroup):
wrapped = _tp_wrapped(model, layer_idx, group)
if wrapped is not model:
return wrapped
for name, layer in model.named_children():
tp_layer = apply_tp(layer, layer_idx, group)
setattr(model, name, tp_layer)
return model