optimum/habana/transformers/gaudi_configuration.py (64 lines of code) (raw):

# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from pathlib import Path from optimum.configuration_utils import BaseConfig from optimum.utils import logging logger = logging.get_logger(__name__) # Default bf16 and fp32 ops (BERT) DEFAULT_BF16_OPS = [ "add", "addmm", "bmm", "div", "dropout", "gelu", "iadd", "linear", "layer_norm", "matmul", "mm", "rsub", "softmax", "truediv", ] DEFAULT_FP32_OPS = [ "embedding", "nll_loss", "log_softmax", ] GAUDI_CONFIG_NAME = "gaudi_config.json" class GaudiConfig(BaseConfig): CONFIG_NAME = "gaudi_config.json" FULL_CONFIGURATION_FILE = "gaudi_config.json" def __init__(self, **kwargs): # Torch Autocast self.use_torch_autocast = kwargs.pop("use_torch_autocast", False) self.autocast_bf16_ops = kwargs.pop("autocast_bf16_ops", None) self.autocast_fp32_ops = kwargs.pop("autocast_fp32_ops", None) self.use_dynamic_shapes = kwargs.pop("use_dynamic_shapes", False) # Use Habana's custom AdamW implementation self.use_fused_adam = kwargs.pop("use_fused_adam", False) # Use Habana's custom fused clip norm implementation self.use_fused_clip_norm = kwargs.pop("use_fused_clip_norm", False) # TODO: to remove in a future version def write_bf16_fp32_ops_to_text_files( self, path_to_bf16_file: Path, path_to_fp32_file: Path, ): for path, ops in zip( [Path(path_to_bf16_file), Path(path_to_fp32_file)], [self.autocast_bf16_ops, self.autocast_fp32_ops] ): with path.open("w") as text_file: # writelines does not add new lines after each element so "\n" is inserted text_file.writelines(op + "\n" for op in ops) def declare_autocast_bf16_fp32_ops(self): if self.autocast_bf16_ops is not None and self.autocast_fp32_ops is not None: if "habana_frameworks.torch.core" in sys.modules: raise RuntimeError( "Setting bf16/fp32 ops for Torch Autocast but `habana_frameworks.torch.core` has already been imported. " "You should instantiate your Gaudi config and your training arguments before importing from `habana_frameworks.torch` or calling a method from `optimum.habana.utils`." ) else: autocast_bf16_filename = "/tmp/lower_list.txt" autocast_fp32_filename = "/tmp/fp32_list.txt" self.write_bf16_fp32_ops_to_text_files( autocast_bf16_filename, autocast_fp32_filename, ) os.environ["PT_HPU_AUTOCAST_LOWER_PRECISION_OPS_LIST"] = autocast_bf16_filename os.environ["PT_HPU_AUTOCAST_FP32_OPS_LIST"] = autocast_fp32_filename