optimum/habana/transformers/models/baichuan/modeling_baichuan.py (1,149 lines of code) (raw):

# Copyright 2023 Baichuan Inc. All Rights Reserved. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adapted from the following sources: https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/modeling_baichuan.py https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/modeling_baichuan.py """ import math import os from contextlib import contextmanager from threading import Thread from typing import List, Optional, Tuple, Union import habana_frameworks.torch.core as htcore import torch from torch import nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from transformers import PretrainedConfig, PreTrainedModel from transformers.activations import ACT2FN from transformers.cache_utils import Cache from transformers.generation.utils import GenerationConfig from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.utils import logging from ...modeling_attn_mask_utils import _gaudi_prepare_4d_causal_attention_mask from .configuration_baichuan import BaichuanConfig from .generation_utils import TextIterStreamer, build_chat_input logger = logging.get_logger(__name__) try: from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE except ImportError: print("Not using HPU fused kernel for apply_rotary_pos_emb") FusedRoPE = None try: from habana_frameworks.torch.hpex.normalization import FusedRMSNorm as FusedRMSNorm except ImportError: print("Not using HPU fused kernel for RMSNorm") FusedRMSNorm = None try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None def gaudi_baichuan_build_alibi_tensor( attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype ) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`): Number of heads. dtype (`torch.dtype`): Dtype of the output tensor. training (`bool`): Whether the model is being trained or not. """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length, device=attention_mask.device).unsqueeze( 0 ).unsqueeze(0).expand(num_heads, -1, -1).unsqueeze(0) return alibi.to(dtype) class Matmul(nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return torch.matmul(x, y) class KVCache(nn.Module): def __init__(self): super(KVCache, self).__init__() self.cache = None self.inp_seq_len = -1 def allocate(self, inp_seq_len, dtype, device, shape): if self.cache is None or self.cache.shape != shape: self.inp_seq_len = inp_seq_len self.cache = torch.zeros(shape, dtype=dtype, device=device) else: assert self.inp_seq_len == inp_seq_len, ( f"inp_seq_len must be the same. self.inp_seq_len:{self.inp_seq_len} inp_seq_len:{inp_seq_len}" ) self.cache.fill_(0) def update(self, prev, cur, dim, idx, inp_seq_len): orig_cur = cur if prev.shape == cur.shape: prev.copy_(cur) return orig_cur if cur.shape[2] > 1 and cur.shape[2] <= prev.shape[2]: # Initialize prev[:, :, :inp_seq_len, :].copy_(cur) return orig_cur assert cur.shape[2] == 1, f"Cannot update kv-cache. Unsupported shapes. prev:{prev.shape} cur:{cur.shape}" if idx is not None: prev.index_copy_(dim, idx - 1, cur) return prev else: return torch.cat((prev, cur), dim=dim) def get_shape(self): if self.cache is None: return None return self.cache.shape def forward(self, cur, dim, idx): return self.update(self.cache, cur, dim, idx, self.inp_seq_len) class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.empty(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): if hidden_states.device.type == "hpu" and FusedRMSNorm: # mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype if hidden_states.dtype != self.weight.dtype: orig_dtype = hidden_states.dtype hidden_states = FusedRMSNorm.apply( hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon ) return hidden_states.to(orig_dtype) else: hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon) return hidden_states else: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): if q.device.type == "hpu" and FusedRoPE: # TODO: remove `.clone()` when it is fixed in SynapseAI return FusedRoPE.apply( q, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ), FusedRoPE.apply( k, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ) else: cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] # 7B model only def pre_mlp_forward(self, x): inputs = self.act_fn(self.gate_proj(x)) * self.up_proj(x) output = self.down_proj(inputs) return output # 7B model only def mlp_all_reduce(self, x): if hasattr(self.down_proj, "all_reduce"): self.down_proj.all_reduce(x) # 7B model only def post_mlp_forward(self, x): if hasattr(self.down_proj, "post_all_reduce"): return self.down_proj.post_all_reduce(x) return x # 13B model only def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # FusedScaledDotProductAttention class ModuleFusedSDPA(nn.Module): def __init__(self, fusedSDPA): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA def forward(self, query, key, value, attn_mask, dropout_p, is_causal, scale, softmax_mode): return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_causal, scale, softmax_mode) class Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: BaichuanConfig): super().__init__() self.config = config self.is_7b = hasattr(config, "max_position_embeddings") self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings if self.is_7b else config.model_max_length self.norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.matmul_qk = Matmul() self.matmul_av = Matmul() self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None self.k_cache = KVCache() self.v_cache = KVCache() self.inp_seq_len = -1 if self.is_7b: self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) self.block_size = 8192 else: self.q_block_size = 2048 def update_sincos_cache(self, seq_len): # Call rotary emb forward() to update cos/sin cache when infering more than self.max_position_embeddings # This helps in avoiding creation of these caches during actual model forward pass and # reduce memory consumption and improve performance. if seq_len > self.max_position_embeddings: self.max_position_embeddings = seq_len _, _ = self.rotary_emb(self.W_pack.weight, seq_len=seq_len) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): cache_shape = (batch_size, self.num_heads, max_seq_len, self.head_dim) device = self.W_pack.weight.device dtype = self.config.torch_dtype self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape) self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape) def reorder(self, tensor, beam_idx, dim_a, dim_b): updated = tensor.index_select(0, beam_idx) tensor.copy_(updated) def reorder_kv_cache(self, beam_idx: torch.LongTensor): if self.k_cache.cache is None: return (None, None) head_dim = self.k_cache.cache.size(-1) seq_length = self.k_cache.cache.size(-2) self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim) self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim) return (self.k_cache.cache.shape, self.v_cache.cache.shape) # 7B model only def gaudi_flash_attn_v1(self, query_layer, key_layer, value_layer, attention_mask, dropout_rate, softmax_mode): """ Gaudi version of Flash Attention V1 to support long sequence at prompt phase Causal mask is not supported in this optimization """ q_len = query_layer.size(-2) q_tiles = (q_len // self.block_size) if (q_len % self.block_size == 0) else math.ceil(q_len / self.block_size) q_padding = q_tiles * self.block_size - q_len query_layer = F.pad(query_layer, (0, 0, 0, q_padding), "constant", 0) if attention_mask is not None: attention_mask = F.pad(attention_mask, (0, 0, 0, q_padding), "constant", torch.finfo(key_layer.dtype).min) row_o_list = [] for i in range(q_tiles): s, e = i * self.block_size, (i + 1) * self.block_size row_q = query_layer[:, :, s:e, :] row_mask = attention_mask[:, :, s:e, :] attn_output_partial = self.fused_scaled_dot_product_attention( row_q, key_layer, value_layer, row_mask, dropout_rate, False, None, softmax_mode ) row_o_list.append(attn_output_partial) attn_output = torch.cat(row_o_list, dim=-2) if q_padding != 0: attn_output = attn_output[:, :, :-q_padding, :] return attn_output # 7B model only def pre_attn_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() proj = self.W_pack(hidden_states) proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if token_idx is None: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache: kv_seq_len = past_key_value[0][-2] else: kv_seq_len = past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if use_cache: # reuse k, v, self_attention if reuse_cache: key_states = self.k_cache(key_states, 2, token_idx) value_states = self.v_cache(value_states, 2, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: past_key = torch.zeros(key_states.shape, dtype=self.W_pack.weight.dtype, device=key_states.device) past_value = torch.zeros( key_states.shape, dtype=self.W_pack.weight.dtype, device=key_states.device ) past_key_value = [past_key, past_value] key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len) value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (key_states, value_states) if cache_idx is not None and q_len == 1: key_states = key_states[:, :, :cache_idx, :] value_states = value_states[:, :, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] kv_seq_len = key_states.shape[-2] else: past_key_value = None if use_flash_attention and FusedSDPA: import habana_frameworks.torch.hpu as ht softmax_mode = "fast" if flash_attention_fast_softmax else "None" if q_len == 1: # next token use_recompute = True if os.getenv("QUANT_CONFIG", "") else False with ht.sdp_kernel(enable_recompute=use_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode ) elif q_len > 32768: # first token case1: Long sequence should go to flash_attn_v1 to avoid OOM issue with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.gaudi_flash_attn_v1( query_states, key_states, value_states, attention_mask, 0.0, softmax_mode ) htcore.mark_step() else: # first token if flash_attention_causal_mask: # causal masking on first token requires inputs to be of the same length with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, None, 0.0, True, None, softmax_mode ) else: with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode ) else: attn_weights = self.matmul_qk(query_states, key_states.transpose(-2, -1)) * self.norm_factor if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask if cache_position is not None: causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask if attn_softmax_bf16: attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = self.matmul_av(attn_weights, value_states) attn_output = attn_output.reshape(bsz, -1, q_len, self.head_dim) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # 7B model only def attention_all_reduce(self, attn_output): if hasattr(self.o_proj, "all_reduce"): self.o_proj.all_reduce(attn_output) # 7B model only def post_attn_forward(self, attn_output): if hasattr(self.o_proj, "post_all_reduce"): self.o_proj.post_all_reduce(attn_output) return attn_output # 13B model only def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, alibi: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() proj = self.W_pack(hidden_states) proj = proj.view(bsz, q_len, 3, self.num_heads, self.head_dim) query_states, key_states, value_states = proj[..., 0, :, :], proj[..., 1, :, :], proj[..., 2, :, :] query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if token_idx is None: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache: kv_seq_len = past_key_value[0][-2] else: kv_seq_len = past_key_value[0].shape[-2] if use_cache: # reuse k, v, self_attention if reuse_cache: key_states = self.k_cache(key_states, 2, token_idx) value_states = self.v_cache(value_states, 2, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: past_key = torch.zeros(key_states.shape, dtype=self.W_pack.weight.dtype, device=key_states.device) past_value = torch.zeros( key_states.shape, dtype=self.W_pack.weight.dtype, device=key_states.device ) past_key_value = (past_key, past_value) key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len) value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (key_states, value_states) if cache_idx is not None and q_len == 1: key_states = key_states[:, :, :cache_idx, :] value_states = value_states[:, :, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] alibi = alibi[:, :, :, :cache_idx] kv_seq_len = key_states.shape[-2] else: past_key_value = None # [batch_size, num_heads, q_length, kv_length] if use_flash_attention and FusedSDPA and q_len < 12288: import habana_frameworks.torch.hpu as ht softmax_mode = "fast" if flash_attention_fast_softmax else "None" if q_len == 1: # next token use_recompute = True if os.getenv("QUANT_CONFIG", "") else False with ht.sdp_kernel(enable_recompute=use_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode ) else: # first token if flash_attention_causal_mask: raise NotImplementedError( "SDPA with Alibi positional embedding CANNOT use the causal mask! " "Please disable --flash_attention_causal_mask and try again." ) else: with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode ) elif q_len >= 12288: q_tiles = ( (q_len // self.q_block_size) if (q_len % self.q_block_size == 0) else math.ceil(q_len / self.q_block_size) ) q_padding = q_tiles * self.q_block_size - q_len query_states = F.pad(query_states, (0, 0, 0, q_padding), "constant", 0) if attention_mask is not None: attention_mask = F.pad( attention_mask, (0, 0, 0, q_padding), "constant", torch.finfo(key_states.dtype).min ) row_o_list = [] for i in range(q_tiles): s, e = i * self.q_block_size, (i + 1) * self.q_block_size row_q = query_states[:, :, s:e, :] row_mask = attention_mask[:, :, s:e, :] attn_weights_partial = self.matmul_qk(row_q, key_states.transpose(-2, -1)) * self.norm_factor attn_weights_partial = attn_weights_partial + row_mask attn_weights_partial = attn_weights_partial.to(torch.float32) + self.beta * alibi if attn_softmax_bf16: attn_weights_partial = attn_weights_partial.to(query_states.dtype) attn_weights_partial = nn.functional.softmax( attn_weights_partial, dim=-1, dtype=query_states.dtype ) else: # upcast attention to fp32 attn_weights_partial = nn.functional.softmax(attn_weights_partial, dim=-1, dtype=torch.float32).to( query_states.dtype ) attn_output_partial = self.matmul_av(attn_weights_partial, value_states) row_o_list.append(attn_output_partial) attn_output = torch.cat(row_o_list, dim=-2) if q_padding != 0: attn_output = attn_output[:, :, :-q_padding, :] attn_output = attn_output.reshape(bsz, -1, q_len, self.head_dim) htcore.mark_step() else: # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] attn_weights = self.matmul_qk(query_states, key_states.transpose(-2, -1)) * self.norm_factor if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask if cache_position is not None: causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]] alibi = alibi[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = attn_weights.to(torch.float32) + self.beta * alibi if attn_softmax_bf16: attn_weights = attn_weights.to(query_states.dtype) attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = self.matmul_av(attn_weights, value_states) attn_output = attn_output.reshape(bsz, -1, q_len, self.head_dim) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class DecoderLayer(nn.Module): def __init__(self, config: BaichuanConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Attention(config=config) self.mlp = MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.is_7b = hasattr(config, "max_position_embeddings") def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.self_attn.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.self_attn.update_sincos_cache(seq_len) # position_tensor: positional tensor # position_tensor is alibi when calling self.forward() for 13B model. # position_tensor is position_ids when calling self.forward() for 7B model, def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_tensor: Optional[Union[torch.Tensor, torch.LongTensor]] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states if self.is_7b: # Self Attention hidden_states, attn_weights, present_key_value = self.pre_attn( hidden_states, attention_mask, position_tensor, past_key_value, output_attentions, use_cache, cache_position, token_idx, attn_softmax_bf16, reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, cache_idx=cache_idx, **kwargs, ) self.self_attn.attention_all_reduce(hidden_states) hidden_states, residual = self.post_attn_pre_mlp(hidden_states, residual) self.mlp.mlp_all_reduce(hidden_states) hidden_states = self.post_mlp(hidden_states, residual) else: hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, present_key_value = self.self_attn( hidden_states, attention_mask, position_tensor, past_key_value, output_attentions, use_cache, cache_position, token_idx, attn_softmax_bf16, reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, cache_idx=cache_idx, flash_attention_fast_softmax=flash_attention_fast_softmax, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if use_cache: outputs += (present_key_value,) return outputs # 7B model only def pre_attn( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, attn_weights, present_key_value = self.self_attn.pre_attn_forward( hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, cache_position, token_idx, attn_softmax_bf16, reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, cache_idx=cache_idx, **kwargs, ) return hidden_states, attn_weights, present_key_value # 7B model only def post_attn_pre_mlp(self, hidden_states, residual): hidden_states = self.self_attn.post_attn_forward(hidden_states) if self.training: hidden_states = hidden_states + residual residual = hidden_states else: residual.add_(hidden_states) hidden_states = residual hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp.pre_mlp_forward(hidden_states) return hidden_states, residual # 7B model only def post_mlp(self, hidden_states, residual): hidden_states = self.mlp.post_mlp_forward(hidden_states) if self.training: hidden_states = hidden_states + residual else: residual.add_(hidden_states) hidden_states = residual return hidden_states class BaichuanPreTrainedModel(PreTrainedModel): config_class = BaichuanConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BaichuanModel): module.gradient_checkpointing = value class BaichuanModel(BaichuanPreTrainedModel): def __init__(self, config: BaichuanConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.is_7b = hasattr(config, "max_position_embeddings") self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if self.is_7b: self.gradient_checkpointing = False else: self.num_heads = config.num_attention_heads self.gradient_checkpointing = config.gradient_checkpointing self.max_cache_pos = config.model_max_length # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): for layer in self.layers: layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers) def update_sincos_cache(self, seq_len): for layer in self.layers: layer.update_sincos_cache(seq_len) # position_tensor: positional tensor # The passed value of position_tensor is ignored for 13B model, self.forward() # will build alibi internally. position_tensor is position_ids for 7B model, it # might be None. def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_tensor: Optional[Union[torch.Tensor, torch.LongTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, lazy_mode: Optional[bool] = True, **kwargs, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You need to provide input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: if reuse_cache: past_key_values_length = past_key_values[0][0][2] else: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if self.is_7b: # position_tensor is position_ids or None if position_tensor is None: position_tensor = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=inputs_embeds.device, ) position_tensor = position_tensor.unsqueeze(0) else: if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=inputs_embeds.device) else: attention_mask = attention_mask.to(inputs_embeds.device) # The passed position_tensor is ignored, build position_tensor (alibi) internally position_tensor = gaudi_baichuan_build_alibi_tensor(attention_mask, self.num_heads, dtype=torch.float32) cache_position = None # HPU specific mask generation attention_mask = _gaudi_prepare_4d_causal_attention_mask( attention_mask, input_ids.shape if input_ids is not None else (batch_size, seq_length), inputs_embeds, past_key_values_length, ) if not self.is_7b and use_flash_attention and FusedSDPA: attention_mask = (attention_mask.to(torch.float32) + position_tensor).to(inputs_embeds.dtype) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None if lazy_mode: htcore.mark_step() for idx, decoder_layer in enumerate(self.layers): if ( lazy_mode and not self.training and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1) ): htcore.mark_step() if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module( *inputs, None, output_attentions, use_cache, cache_position, None, attn_softmax_bf16, False, use_flash_attention, flash_attention_recompute, flash_attention_causal_mask, flash_attention_fast_softmax, ) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_tensor, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_tensor=position_tensor, past_key_value=None if past_key_values is None else past_key_values[idx], output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, cache_idx=cache_idx, **kwargs, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class NormHead(nn.Module): def __init__(self, hidden_size, vocab_size, bias=False): super().__init__() self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size))) nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): norm_weight = nn.functional.normalize(self.weight) return nn.functional.linear(hidden_states, norm_weight) _init_weights = True @contextmanager def no_init_weights(_enable=True): global _init_weights old_init_weights = _init_weights if _enable: _init_weights = False try: yield finally: _init_weights = old_init_weights class BaichuanForCausalLM(BaichuanPreTrainedModel): def __init__(self, config, *model_args, **model_kwargs): super().__init__(config, *model_args, **model_kwargs) self.model = BaichuanModel(config) self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) self.is_7b = hasattr(config, "max_position_embeddings") # if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']: if hasattr(config, "quantization_config"): raise RuntimeError( "Currently the Habana Optimum does not support INT8/4 quantization for Baichuan2, abort." ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) self.kv_cache_len = max_seq_len def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.model.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.model.update_sincos_cache(seq_len) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", use_safetensors: bool = None, **kwargs, ): # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, _ = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=False, proxies=None, local_files_only=local_files_only, token=token, revision=revision, subfolder="", _from_auto=False, _from_pipeline=None, **kwargs, ) return super(BaichuanForCausalLM, cls).from_pretrained( pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, use_safetensors=use_safetensors, **kwargs, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[Union[torch.Tensor, torch.LongTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, trim_logits: Optional[bool] = False, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, lazy_mode: Optional[bool] = True, **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_tensor=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, cache_idx=cache_idx, lazy_mode=lazy_mode, **kwargs, ) hidden_states = outputs[0] _, seq_len, _ = hidden_states.shape if seq_len > 1 and trim_logits and not self.training: if token_idx is not None: hidden_states = hidden_states.index_select(1, token_idx - 1) else: hidden_states = hidden_states[:, -1, :] logits = self.lm_head(hidden_states).float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) softmax_normalizer = shift_logits.max(-1).values ** 2 z_loss = self.config.z_loss_weight * softmax_normalizer.mean() # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) + z_loss if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_idx=None, **kwargs ): past_length = 0 reuse_cache = kwargs.get("reuse_cache") if past_key_values is not None: if token_idx is not None: input_ids = torch.index_select(input_ids, 1, token_idx - 1) else: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] elif reuse_cache and token_idx is not None: # With reuse_cache, KV cache is pre allocated hence for the 1st token we can slice the inputs till token idx for the fwd pass input_ids = input_ids[:, :token_idx] attention_mask = attention_mask[:, :token_idx] if self.is_7b: position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: if token_idx is not None: position_ids = torch.index_select(position_ids, 1, token_idx - 1) else: position_ids = position_ids[:, -input_ids.shape[1] :] else: # 13B model uses alibi which is built internally. set position_ids to None here position_ids = None cache_position = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": None if position_ids is None else position_ids.contiguous(), "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "token_idx": token_idx, "trim_logits": kwargs.get("trim_logits"), "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"), "reuse_cache": reuse_cache, "use_flash_attention": kwargs.get("use_flash_attention"), "flash_attention_recompute": kwargs.get("flash_attention_recompute"), "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"), "flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"), "cache_idx": kwargs.get("cache_idx"), "lazy_mode": kwargs.get("lazy_mode"), } ) return model_inputs @staticmethod def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ return tuple( ( layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), ) for layer_past in past ) def chat( self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig] = None, **kwargs, ): generation_config = generation_config or self.generation_config input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens) if stream: streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) Thread( target=self.generate, inputs=input_ids, streamer=streamer, generation_config=generation_config, lazy_mode=True, hpu_graphs=True, ).start() return streamer else: outputs = self.generate( input_ids, generation_config=generation_config, lazy_mode=True, hpu_graphs=True ).cpu() response = tokenizer.decode(outputs[0][len(input_ids[0]) :], skip_special_tokens=True) return response