optimum/habana/transformers/models/clip/modeling_clip.py (268 lines of code) (raw):
from typing import Optional, Tuple
import torch
from torch import nn
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.models.clip.configuration_clip import CLIPConfig
from transformers.models.clip.modeling_clip import (
CLIPMLP,
CLIPAttention,
CLIPEncoder,
CLIPEncoderLayer,
CLIPVisionEmbeddings,
CLIPVisionModel,
CLIPVisionTransformer,
)
from ..modeling_all_models import Matmul
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
class GaudiCLIPVisionEmbeddings(CLIPVisionEmbeddings):
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
)
target_dtype = self.patch_embedding.weight.dtype
# if HQT quantization enabled, remove the explicit cast to float8 to avoid HQT casting error
if "float8" in str(target_dtype) and pixel_values.device.type == "hpu":
target_dtype = torch.bfloat16
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
def forward(self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode):
return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode)
class Softmax(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, dim=None, invAttnHead=None):
return torch.nn.functional.softmax(x, dim)
class GaudiCLIPAttention(CLIPAttention):
def __init__(self, config):
super().__init__(config=config)
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
self.bmm1 = Matmul()
self.bmm2 = Matmul()
self.softmax = Softmax()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Copied from CLIPAttention.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention to enable FusedSDPA
- add new args flash_attention_recompute
- add new args flash_attention_fast_softmax
"""
bsz, tgt_len, _ = hidden_states.size()
attn_weights_reshaped = None
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
if FusedSDPA and use_flash_attention:
import habana_frameworks.torch.hpu as ht
softmax_mode = "fast" if flash_attention_fast_softmax else "None"
with ht.sdp_kernel(enable_recompute=flash_attention_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
self.dropout,
False,
1,
softmax_mode,
)
else:
attn_weights = self.bmm1(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = self.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = self.bmm2(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, -1)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class GaudiCLIPEncoderLayer(CLIPEncoderLayer):
def __init__(self, config: CLIPConfig):
super(CLIPEncoderLayer, self).__init__()
self.embed_dim = config.hidden_size
self.self_attn = GaudiCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Copied from CLIPEncoderLayer.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention
- add new args flash_attention_recompute
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GaudiCLIPEncoder(CLIPEncoder):
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> BaseModelOutput:
"""
Copied from CLIPEncoder.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention
- add new args flash_attention_recompute
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
class GaudiCLIPVisionTransformer(CLIPVisionTransformer):
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> BaseModelOutputWithPooling:
"""
Copied from CLIPVisionTransformer.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention
- add new args flash_attention_recompute
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GaudiCLIPVisionModel(CLIPVisionModel):
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
"""
Copied from CLIPVisionModel.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention
- add new args flash_attention_recompute
"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)