optimum/habana/transformers/models/clip/modeling_clip.py (268 lines of code) (raw):

from typing import Optional, Tuple import torch from torch import nn from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from transformers.models.clip.configuration_clip import CLIPConfig from transformers.models.clip.modeling_clip import ( CLIPMLP, CLIPAttention, CLIPEncoder, CLIPEncoderLayer, CLIPVisionEmbeddings, CLIPVisionModel, CLIPVisionTransformer, ) from ..modeling_all_models import Matmul try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None class GaudiCLIPVisionEmbeddings(CLIPVisionEmbeddings): def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})." ) target_dtype = self.patch_embedding.weight.dtype # if HQT quantization enabled, remove the explicit cast to float8 to avoid HQT casting error if "float8" in str(target_dtype) and pixel_values.device.type == "hpu": target_dtype = torch.bfloat16 patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA def forward(self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode): return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode) class Softmax(nn.Module): def __init__(self): super().__init__() def forward(self, x, dim=None, invAttnHead=None): return torch.nn.functional.softmax(x, dim) class GaudiCLIPAttention(CLIPAttention): def __init__(self, config): super().__init__(config=config) self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None self.bmm1 = Matmul() self.bmm2 = Matmul() self.softmax = Softmax() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Copied from CLIPAttention.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention to enable FusedSDPA - add new args flash_attention_recompute - add new args flash_attention_fast_softmax """ bsz, tgt_len, _ = hidden_states.size() attn_weights_reshaped = None # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) if FusedSDPA and use_flash_attention: import habana_frameworks.torch.hpu as ht softmax_mode = "fast" if flash_attention_fast_softmax else "None" with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, self.dropout, False, 1, softmax_mode, ) else: attn_weights = self.bmm1(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = self.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = self.bmm2(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, -1) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class GaudiCLIPEncoderLayer(CLIPEncoderLayer): def __init__(self, config: CLIPConfig): super(CLIPEncoderLayer, self).__init__() self.embed_dim = config.hidden_size self.self_attn = GaudiCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = CLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Copied from CLIPEncoderLayer.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention - add new args flash_attention_recompute """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class GaudiCLIPEncoder(CLIPEncoder): def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> BaseModelOutput: """ Copied from CLIPEncoder.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention - add new args flash_attention_recompute """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) class GaudiCLIPVisionTransformer(CLIPVisionTransformer): def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> BaseModelOutputWithPooling: """ Copied from CLIPVisionTransformer.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention - add new args flash_attention_recompute """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) last_hidden_state = encoder_outputs.last_hidden_state pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GaudiCLIPVisionModel(CLIPVisionModel): def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> BaseModelOutputWithPooling: """ Copied from CLIPVisionModel.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention - add new args flash_attention_recompute """ return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, )