optimum/habana/transformers/models/deepseek_v3/modeling_deepseek_v3.py (1,374 lines of code) (raw):
# coding=utf-8
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch DeepSeekV3 model. Adapted from https://huggingface.co/deepseek-ai/DeepSeek-R1/resolve/main/modeling_deepseek.py
The main differences are:
- Use Gaudi Flash Attention
- Optimized KV cache with support for static shapes
- Use fused Gaudi MoE, RoPE, and RMSNorm operators
- Enable expert parallelism
"""
import math
import warnings
from typing import List, Optional, Tuple, Union
import habana_frameworks.torch.core as htcore
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.generation import GenerationMixin
from transformers.integrations.deepspeed import is_deepspeed_available
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import (
ALL_LAYERNORM_LAYERS,
)
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ....distributed.tensorparallel import _all_reduce
from ...modeling_attn_mask_utils import _gaudi_prepare_4d_causal_attention_mask
from ..modeling_all_models import apply_customized_rope_module
from .configuration_deepseek_v3 import DeepseekV3Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DeepseekV3Config"
# Maximum number of experts supported by dynamic MoE op (mixture_of_experts)
SLICE_MAX_EXPERT = 80
# import hpu fused ops
try:
from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE
print("Using HPU fused kernel for apply_rotary_pos_emb")
except ImportError:
print("Not using HPU fused kernel for apply_rotary_pos_emb")
FusedRoPE = None
try:
from habana_frameworks.torch.hpex.normalization import FusedRMSNorm
print("Using HPU fused kernel for RMSNorm")
except ImportError:
print("Not using HPU fused kernel for RMSNorm")
FusedRMSNorm = None
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DeepseekV3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DeepseekV3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
if hidden_states.device.type == "hpu" and FusedRMSNorm:
# use hpu fused rmsnorm
# mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype
if hidden_states.dtype != self.weight.dtype:
orig_dtype = hidden_states.dtype
hidden_states = FusedRMSNorm.apply(
hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon
)
return hidden_states.to(orig_dtype)
else:
hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon)
return hidden_states
else:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
class DeepseekV3RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
# make it static (max_position_embeddings) instead of updating depending on
# longest seq_len seen till now: seq_len > self.max_seq_len_cached
self.max_seq_len_cached = max_position_embeddings
self._set_cos_sin_cache(
seq_len=self.max_seq_len_cached,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq.to(t.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len is not None and seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Inverse dim formula to find dim based on number of rotations
def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
# Find dim range bounds based on rotations
def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
low = math.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = math.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def yarn_get_mscale(scale=1, mscale=1):
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
def yarn_linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
original_max_position_embeddings=4096,
beta_fast=32,
beta_slow=1,
mscale=1,
mscale_all_dim=0,
):
self.scaling_factor = scaling_factor
self.original_max_position_embeddings = original_max_position_embeddings
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.mscale_all_dim = mscale_all_dim
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
dim = self.dim
freq_extra = 1.0 / (self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
freq_inter = 1.0 / (
self.scaling_factor * self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
low, high = yarn_find_correction_range(
self.beta_fast,
self.beta_slow,
dim,
self.base,
self.original_max_position_embeddings,
)
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32)
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
_mscale = float(
yarn_get_mscale(self.scaling_factor, self.mscale)
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False)
self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False)
def apply_customized_rope(q, k, cos, sin, position_ids, training=True):
if q.device.type == "hpu" and FusedRoPE: # use fused hpu op
return apply_customized_rope_module(q, k, cos, sin, position_ids, training)
else:
return apply_rotary_pos_emb(q, k, cos, sin, position_ids)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q: torch.Tensor, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
if q.device.type == "hpu" and FusedRoPE:
return FusedRoPE.apply(
q, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids
)
else:
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed
class DeepseekV3MLP(nn.Module):
def __init__(self, config, hidden_size=None, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class MoEGate(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.scoring_func = config.scoring_func
self.seq_aux = config.seq_aux
self.topk_method = config.topk_method
self.n_group = config.n_group
self.topk_group = config.topk_group
# topk selection algorithm
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
if self.topk_method == "noaux_tc":
self.e_score_correction_bias = nn.Parameter(torch.empty((self.n_routed_experts)))
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None)
if self.scoring_func == "sigmoid":
scores = logits.sigmoid()
else:
raise NotImplementedError(f"insupportable scoring function for MoE gating: {self.scoring_func}")
### select top-k experts
if self.topk_method == "noaux_tc":
assert not self.training
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
group_scores = (
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
) # [n, n_group]
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group)
.reshape(bsz * seq_len, -1)
) # [n, e]
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
_, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
topk_weight = scores.gather(1, topk_idx)
else:
raise NotImplementedError(f"insupportable TopK function for MoE gating: {self.topk_method}")
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
return topk_idx, topk_weight
class DeepseekV3MoE(nn.Module):
"""
A mixed expert module containing shared experts.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
if hasattr(config, "ep_size") and config.ep_size > 1:
assert config.ep_size == dist.get_world_size()
self.ep_size = config.ep_size
self.experts_per_rank = config.n_routed_experts // config.ep_size
self.ep_rank = dist.get_rank()
self.experts = nn.ModuleList(
[
(
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank
else None
)
for i in range(config.n_routed_experts)
]
)
else:
self.ep_size = 1
self.experts_per_rank = config.n_routed_experts
self.ep_rank = 0
self.experts = nn.ModuleList(
[
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
for i in range(config.n_routed_experts)
]
)
self.gate = MoEGate(config)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV3MLP(config=config, intermediate_size=intermediate_size)
# Slice experts for max experts supported by fused dynamic mixture_of_experts op
self.expert_slice = math.ceil(self.experts_per_rank / SLICE_MAX_EXPERT)
self.expert_chunk = math.ceil(self.experts_per_rank / self.expert_slice)
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
# we cast back to the input dtype
topk_weight = topk_weight.to(hidden_states.dtype)
batch = orig_shape[0]
sequence_length = orig_shape[1]
hidden_dim = orig_shape[2]
# changes for expert parallelism -- replacement for moe_infer()
if self.training:
padded_weights = torch.zeros(
(batch * sequence_length, self.config.n_routed_experts),
dtype=topk_weight.dtype,
device=topk_weight.device,
)
padded_weights.scatter_(-1, topk_idx, topk_weight)
padded_weights = padded_weights.reshape(-1, sequence_length, self.config.n_routed_experts)
padded_weights = padded_weights.permute(2, 0, 1).unsqueeze(-1)
final_hidden_states = torch.zeros(
(batch, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
for i, expert in enumerate(self.experts):
current_hidden_state = expert(hidden_states)
current_padded_weight = padded_weights[i]
final_hidden_states = (
final_hidden_states
+ current_hidden_state.reshape(-1, sequence_length, hidden_dim) * current_padded_weight
)
final_hidden_states = final_hidden_states.type(hidden_states.dtype)
final_hidden_states = final_hidden_states.view(*orig_shape)
# final_hidden_states = AddAuxiliaryLoss.apply(final_hidden_states, aux_loss)
else:
final_hidden_states = torch.zeros(
(batch * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# changes to support hpu fused dynamic MoE op -- replacement for moe_infer()
# loop through expert slices due to limits on max. experts supported by mixture_of_experts op
for idx in range(self.expert_slice):
experts_min = (self.ep_rank * self.experts_per_rank) + (self.expert_chunk * idx)
experts_max = min((experts_min + self.expert_chunk), (self.ep_rank + 1) * self.experts_per_rank)
experts_range = range(experts_min, experts_max)
gate_proj_list = [self.experts[i].gate_proj.weight.squeeze() for i in experts_range]
down_proj_list = [self.experts[i].down_proj.weight.squeeze() for i in experts_range]
up_proj_list = [self.experts[i].up_proj.weight.squeeze() for i in experts_range]
hidden_states_slice = torch.ops.hpu.mixture_of_experts(
hidden_states=hidden_states,
expert_routing_table=topk_idx,
router_weights=topk_weight,
w1=gate_proj_list,
w2=up_proj_list,
w3=down_proj_list,
permuted_weights=True,
activation="silu",
experts_min=experts_min,
experts_max=experts_max - 1,
)
final_hidden_states = final_hidden_states + hidden_states_slice
htcore.mark_step()
if self.ep_size > 1:
final_hidden_states = _all_reduce(final_hidden_states)
elif is_deepspeed_available():
from deepspeed import comm as dist
if dist.is_initialized():
dist.all_reduce(final_hidden_states, op=dist.ReduceOp.SUM)
final_hidden_states = final_hidden_states.type(hidden_states.dtype)
final_hidden_states = final_hidden_states.reshape(-1, sequence_length, hidden_dim)
if self.config.n_shared_experts is not None:
final_hidden_states = final_hidden_states + self.shared_experts(identity)
return final_hidden_states
# Functional apis need to be wrapped in classes for quantization on hpu
class Matmul(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return torch.matmul(x, y)
def gaudi_deepseekv3_repeat_kv(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: torch.Tensor,
n_rep: int,
):
"""
Copied from repeat_kv: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py
The only differences are:
- Append num_key_value_heads == 1 check as kv states can be broadcasted during matmuls so need to expand and reshape them.
- Add new args query_states, key_states, value_states and attention_mask and update the logic for expansion.
The query states go from (batch, num_heads, seqlen, head_dim) to (batch, num_key_value_heads, n_rep, seqlen, head_dim)
The key/value states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_key_value_heads, 1, seqlen, head_dim)
"""
batch, num_key_value_heads, kv_len, head_dim = key_states.shape
if n_rep == 1 or num_key_value_heads == 1:
return query_states, key_states, value_states, attention_mask
new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim)
key_states = key_states.reshape(new_kv_shape)
value_states = value_states.reshape(new_kv_shape)
batch, q_heads, q_len, head_dim = query_states.shape
new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim)
query_states = query_states.reshape(new_q_shape)
if attention_mask is not None:
# Add groups dim and set to 1
attention_mask = attention_mask.unsqueeze(1)
return query_states, key_states, value_states, attention_mask
# hpu specific. kv cache handling. similar to optimum-habana deepseek_v2
class KVCache(torch.nn.Module):
def __init__(self):
super(KVCache, self).__init__()
self.cache = None
self.inp_seq_len = -1
def allocate(self, inp_seq_len, dtype, device, shape):
if self.cache is None or self.cache.shape != shape:
self.inp_seq_len = inp_seq_len
self.cache = torch.zeros(shape, dtype=dtype, device=device)
else:
assert self.inp_seq_len == inp_seq_len, (
f"inp_seq_len must be the same. self.inp_seq_len:{self.inp_seq_len} inp_seq_len:{inp_seq_len}"
)
self.cache.fill_(0)
def update(self, prev, cur, dim, idx, inp_seq_len):
orig_cur = cur
if prev.shape == cur.shape:
prev.copy_(cur)
return orig_cur
if cur.shape[1] > 1 and cur.shape[1] <= prev.shape[1]:
# Initialize
prev[:, :inp_seq_len, :].copy_(cur)
return orig_cur
assert cur.shape[1] == 1, f"Cannot update kv-cache. Unsupported shapes. prev:{prev.shape} cur:{cur.shape}"
if idx is not None:
prev.index_copy_(dim, idx - 1, cur)
return prev
else:
return torch.cat((prev, cur), dim=dim)
def get_shape(self):
if self.cache is None:
return None
return self.cache.shape
def forward(self, cur, dim, idx):
return self.update(self.cache, cur, dim, idx, self.inp_seq_len)
# hpu specific fused op. wrapped in a class as functional apis not supported for quantization
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
self.scale = scale
self.attention_dropout = attention_dropout
self.enable_recompute = enable_recompute
self.flash_attention_fp8 = flash_attention_fp8
def forward(
self,
query,
key,
value,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side="left",
):
return self._hpu_kernel_fsdpa.apply(
query,
key,
value,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side,
)
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
class DeepseekV3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.is_causal = True
if self.q_lora_rank is None:
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.q_head_dim, bias=False)
else:
self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias)
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
config.kv_lora_rank + config.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
self.kv_b_proj = nn.Linear(
config.kv_lora_rank,
self.num_heads * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=config.attention_bias,
)
self._init_rope()
self.num_key_value_groups = self.num_heads // config.num_key_value_heads
# hpu specific wrapping functional api into nn.module classes for quantization
self.matmul_qk = Matmul()
self.matmul_av = Matmul()
self.k_cache = KVCache()
self.v_cache = KVCache()
self.inp_seq_len = -1
self.softmax_scale = self.q_head_dim ** (-0.5)
if self.config.rope_scaling is not None:
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
scaling_factor = self.config.rope_scaling["factor"]
if mscale_all_dim:
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
self.softmax_scale = self.softmax_scale * mscale * mscale
self.norm_factor = self.softmax_scale
# hpu specific warpping functional api into nn.module classes for quantization
self.fused_scaled_dot_product_attention = (
ModuleFusedSDPA(
FusedSDPA,
scale=self.norm_factor,
attention_dropout=self.attention_dropout,
enable_recompute=False,
flash_attention_fp8=getattr(config, "flash_attention_fp8", False),
)
if FusedSDPA
else None
)
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = DeepseekV3RotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn":
kwargs = {
key: self.config.rope_scaling[key]
for key in [
"original_max_position_embeddings",
"beta_fast",
"beta_slow",
"mscale",
"mscale_all_dim",
]
if key in self.config.rope_scaling
}
self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
**kwargs,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
# hpu-specific, similar to other model files in OH
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
compressed_kv_cache_shape = (batch_size, max_seq_len, self.kv_lora_rank)
k_pe_cache_shape = (batch_size, max_seq_len, self.qk_rope_head_dim)
device = self.kv_a_proj_with_mqa.weight.device
dtype = self.config.torch_dtype
self.k_cache.allocate(inp_seq_len, dtype, device, compressed_kv_cache_shape)
self.v_cache.allocate(inp_seq_len, dtype, device, k_pe_cache_shape)
def update_sincos_cache(self, seq_len):
# Call rotary emb forward() to update cos/sin cache when inferring more than self.max_position_embeddings
# This helps in avoiding creation of these caches during actual model forward pass and
# reduce memory consumption and improve performance.
if seq_len > self.max_position_embeddings:
self.max_position_embeddings = seq_len
_, _ = self.rotary_emb(self.k_b_proj.weight, seq_len=seq_len)
def reorder(self, tensor, beam_idx, dim_a, dim_b):
updated = tensor.index_select(0, beam_idx)
tensor.copy_(updated)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
if self.k_cache.cache is None:
return (None, None)
head_dim = self.k_cache.cache.size(-1)
seq_length = self.k_cache.cache.size(-2)
self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim)
self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim)
return (self.k_cache.cache.shape, self.v_cache.cache.shape)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2).contiguous()
def split_kv_b_proj(self):
kv_b_proj_weight = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
self.q_absorb = kv_b_proj_weight[:, : self.qk_nope_head_dim, :].unsqueeze(0).transpose(0, 1)
self.out_absorb = kv_b_proj_weight[:, self.qk_nope_head_dim :, :].unsqueeze(0)
def compress_kv(
self,
hidden_states_kv: torch.Tensor,
kv_position_ids: torch.LongTensor,
past_key_value: Optional[Cache] = None,
) -> torch.Tensor:
# return the RoPE'ed & compressed kv
bsz, kv_seq_len, _ = hidden_states_kv.size()
compressed_kv = self.kv_a_proj_with_mqa(hidden_states_kv)
compressed_kv, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_layernorm(compressed_kv)
k_pe = k_pe.view(bsz, kv_seq_len, 1, self.qk_rope_head_dim).transpose(1, 2)
cos, sin = self.rotary_emb.cos_cached, self.rotary_emb.sin_cached
k_pe = apply_rotary_pos_emb(k_pe, cos, sin, kv_position_ids).view(bsz, kv_seq_len, self.qk_rope_head_dim)
return compressed_kv, k_pe
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = False,
cache_idx: int = None,
cache_position: Optional[torch.LongTensor] = None,
attn_softmax_bf16: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: Optional[torch.Tensor] = None,
num_virtual_tokens: int = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Attention masks and past cache are removed.
Input:
- hidden_states: [bsz, q_len, hidden_size]
- position_ids: [bsz, q_len]
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if self.training:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv = (
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
.transpose(1, 2)
)
k_nope, value_states = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
kv_seq_len = value_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if token_idx is None:
if hasattr(past_key_value, "get_usable_length"):
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
else:
kv_seq_len += past_key_value[0].shape[-2]
else:
if num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2]:
kv_seq_len = past_key_value[0].shape[-2] + kv_seq_len
else:
kv_seq_len = past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
q_pe, k_pe = apply_customized_rope(q_pe, k_pe, cos, sin, position_ids, self.training)
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# hpu specific optimization, similar to other modeling files in optimum-habana
if use_flash_attention and FusedSDPA is not None:
if q_len == 1:
# next token
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
0.0,
False,
None,
"None",
False,
None,
"None",
)
else:
# first token
softmax_mode = "fast" if flash_attention_fast_softmax else "None"
if flash_attention_causal_mask:
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
None,
0.0,
True,
None,
softmax_mode,
flash_attention_recompute,
valid_sequence_lengths,
"left",
)
else:
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
0.0,
False,
None,
softmax_mode,
flash_attention_recompute,
None,
"None",
)
else:
query_states, key_states, value_states, attention_mask = gaudi_deepseekv3_repeat_kv(
query_states, key_states, value_states, attention_mask, self.num_key_value_groups
)
attn_weights = self.matmul_qk(query_states, key_states.transpose(-2, -1)) * self.softmax_scale
htcore.mark_step()
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask.float()
if attn_softmax_bf16:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype)
else:
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
query_states.dtype
)
attn_weights = torch.nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = self.matmul_av(attn_weights, value_states)
else:
# inference
hidden_states_q = hidden_states
hidden_states_kv = hidden_states
self.split_kv_b_proj()
q_position_ids = position_ids
kv_position_ids = position_ids
bsz, q_len, _ = hidden_states_q.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states_q)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states_q)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
kv_seq_len = q_pe.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if token_idx is None:
if hasattr(past_key_value, "get_usable_length"):
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
else:
kv_seq_len += past_key_value[0].shape[-2]
else:
if reuse_cache:
kv_seq_len = past_key_value[0][-2]
else:
kv_seq_len = past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len)
q_pe = apply_rotary_pos_emb(q_pe, cos, sin, q_position_ids)
q_nope = torch.matmul(q_nope.transpose(0, 1), self.q_absorb).transpose(0, 1)
compressed_kv, k_pe = self.compress_kv(hidden_states_kv, kv_position_ids)
# update & get all compressed_kv, k_pe
if use_cache:
if reuse_cache:
if past_key_value is not None and isinstance(past_key_value[0], torch.Tensor):
# prefix tuning case. attach past_key_value to generate first token.
compressed_kv = torch.cat((past_key_value[0], compressed_kv), -2)
k_pe = torch.cat((past_key_value[1], k_pe), -2)
compressed_kv = self.k_cache(compressed_kv, 1, token_idx)
k_pe = self.v_cache(k_pe, 1, token_idx)
past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape())
else:
if past_key_value is None:
dtype_1 = hidden_states.dtype
device_1 = hidden_states.device
past_key = torch.zeros(compressed_kv.shape, dtype=dtype_1, device=device_1)
past_value = torch.zeros(k_pe.shape, dtype=dtype_1, device=device_1)
past_key_value = (past_key, past_value)
compressed_kv = self.k_cache.update(
past_key_value[0], compressed_kv, 1, token_idx, self.inp_seq_len
)
k_pe = self.v_cache.update(past_key_value[1], k_pe, 1, token_idx, self.inp_seq_len)
if token_idx is None:
past_key_value = (compressed_kv, k_pe)
if cache_idx is not None and q_len == 1:
compressed_kv = compressed_kv[:, :cache_idx, :]
k_pe = k_pe[:, :cache_idx, :]
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :cache_idx]
kv_seq_len = compressed_kv.shape[-2]
else:
past_key_value = None
kv_seq_len = compressed_kv.size(1)
k_pe = k_pe.view(bsz, 1, kv_seq_len, self.qk_rope_head_dim)
attn_weights = (
torch.matmul(q_pe, k_pe.mT) + torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)
) * self.softmax_scale
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
# Commenting below line as MMLU tasks are failing with this assertion
# assert attention_mask is not None
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q_nope.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.einsum("bhql,blc->bhqc", attn_weights, compressed_kv)
attn_output = torch.matmul(attn_output.permute(2, 1, 0, 3), self.out_absorb.mT).permute(2, 1, 0, 3)
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class DeepseekV3DecoderLayer(nn.Module):
def __init__(self, config: DeepseekV3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DeepseekV3Attention(config=config, layer_idx=layer_idx)
self.mlp = (
DeepseekV3MoE(config)
if (
config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0
)
else DeepseekV3MLP(config)
)
self.input_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return self.self_attn.reorder_kv_cache(beam_idx)
def update_sincos_cache(self, seq_len):
self.self_attn.update_sincos_cache(seq_len)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = False,
cache_idx: int = None,
cache_position: Optional[torch.LongTensor] = None,
attn_softmax_bf16: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: Optional[torch.Tensor] = None,
num_virtual_tokens: int = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
token_idx=token_idx,
reuse_cache=reuse_cache,
cache_idx=cache_idx,
cache_position=cache_position,
attn_softmax_bf16=attn_softmax_bf16,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
flash_attention_causal_mask=flash_attention_causal_mask,
flash_attention_fast_softmax=flash_attention_fast_softmax,
valid_sequence_lengths=valid_sequence_lengths,
num_virtual_tokens=num_virtual_tokens,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
DeepseekV3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DeepseekV3Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3PreTrainedModel(PreTrainedModel):
config_class = DeepseekV3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DeepseekV3DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
DeepseekV3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3Model(DeepseekV3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
Args:
config: DeepseekV3Config
"""
def __init__(self, config: DeepseekV3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DeepseekV3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = "eager"
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
for layer in self.layers:
layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers)
def update_sincos_cache(self, seq_len):
for layer in self.layers:
layer.update_sincos_cache(seq_len)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
cache_idx: int = None,
lazy_mode: Optional[bool] = True,
valid_sequence_lengths: Optional[torch.Tensor] = None,
num_virtual_tokens: int = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# 4d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
if attention_mask is not None:
attention_mask = _gaudi_prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
if lazy_mode:
htcore.mark_step()
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if (
lazy_mode
and not self.training
and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1)
):
htcore.mark_step()
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
token_idx=token_idx,
)
if (
lazy_mode
and not self.training
and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1)
):
htcore.mark_step()
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeepseekV3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
self.kv_cache_len = max_seq_len
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return self.model.reorder_kv_cache(beam_idx)
def update_sincos_cache(self, seq_len):
self.model.update_sincos_cache(seq_len)
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
token_idx: Optional[torch.Tensor] = None,
trim_logits: Optional[bool] = False,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
>>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
token_idx=token_idx,
)
hidden_states = outputs[0]
_, seq_len, _ = hidden_states.shape
if seq_len > 1 and trim_logits and not self.training:
if token_idx is not None:
hidden_states = hidden_states.index_select(1, token_idx - 1)
else:
hidden_states = hidden_states[:, -1, :]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
token_idx = kwargs.get("token_idx")
past_length = 0
max_cache_length = None
if past_key_values is not None:
if token_idx is not None:
input_ids = torch.index_select(input_ids, 1, token_idx - 1)
else:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
if token_idx is not None:
position_ids = torch.index_select(position_ids, 1, token_idx - 1)
else:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"token_idx": token_idx,
"trim_logits": kwargs.get("trim_logits"),
}
)
return model_inputs
@add_start_docstrings(
"""
The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
[`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DeepseekV3Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
logits.device
)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)