optimum/habana/transformers/models/deepseek_v3/modeling_deepseek_v3.py (1,374 lines of code) (raw):

# coding=utf-8 # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DeepSeekV3 model. Adapted from https://huggingface.co/deepseek-ai/DeepSeek-R1/resolve/main/modeling_deepseek.py The main differences are: - Use Gaudi Flash Attention - Optimized KV cache with support for static shapes - Use fused Gaudi MoE, RoPE, and RMSNorm operators - Enable expert parallelism """ import math import warnings from typing import List, Optional, Tuple, Union import habana_frameworks.torch.core as htcore import torch import torch.distributed as dist import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache from transformers.generation import GenerationMixin from transformers.integrations.deepspeed import is_deepspeed_available from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ( ALL_LAYERNORM_LAYERS, ) from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ....distributed.tensorparallel import _all_reduce from ...modeling_attn_mask_utils import _gaudi_prepare_4d_causal_attention_mask from ..modeling_all_models import apply_customized_rope_module from .configuration_deepseek_v3 import DeepseekV3Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DeepseekV3Config" # Maximum number of experts supported by dynamic MoE op (mixture_of_experts) SLICE_MAX_EXPERT = 80 # import hpu fused ops try: from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE print("Using HPU fused kernel for apply_rotary_pos_emb") except ImportError: print("Not using HPU fused kernel for apply_rotary_pos_emb") FusedRoPE = None try: from habana_frameworks.torch.hpex.normalization import FusedRMSNorm print("Using HPU fused kernel for RMSNorm") except ImportError: print("Not using HPU fused kernel for RMSNorm") FusedRMSNorm = None try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) class DeepseekV3RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ DeepseekV3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): if hidden_states.device.type == "hpu" and FusedRMSNorm: # use hpu fused rmsnorm # mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype if hidden_states.dtype != self.weight.dtype: orig_dtype = hidden_states.dtype hidden_states = FusedRMSNorm.apply( hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon ) return hidden_states.to(orig_dtype) else: hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon) return hidden_states else: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm) class DeepseekV3RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. # make it static (max_position_embeddings) instead of updating depending on # longest seq_len seen till now: seq_len > self.max_seq_len_cached self.max_seq_len_cached = max_position_embeddings self._set_cos_sin_cache( seq_len=self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.get_default_dtype(), ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq.to(t.device)) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len is not None and seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3 class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__( self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3 class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__( self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Inverse dim formula to find dim based on number of rotations def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048): return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) # Find dim range bounds based on rotations def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048): low = math.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)) high = math.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)) return max(low, 0), min(high, dim - 1) # Clamp values just in case def yarn_get_mscale(scale=1, mscale=1): if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 def yarn_linear_ramp_mask(min, max, dim): if min == max: max += 0.001 # Prevent singularity linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding): def __init__( self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=4096, beta_fast=32, beta_slow=1, mscale=1, mscale_all_dim=0, ): self.scaling_factor = scaling_factor self.original_max_position_embeddings = original_max_position_embeddings self.beta_fast = beta_fast self.beta_slow = beta_slow self.mscale = mscale self.mscale_all_dim = mscale_all_dim super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len dim = self.dim freq_extra = 1.0 / (self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) freq_inter = 1.0 / ( self.scaling_factor * self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) ) low, high = yarn_find_correction_range( self.beta_fast, self.beta_slow, dim, self.base, self.original_max_position_embeddings, ) inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32) inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(seq_len, device=device, dtype=torch.float32) freqs = torch.outer(t, inv_freq) _mscale = float( yarn_get_mscale(self.scaling_factor, self.mscale) / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) ) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False) self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False) def apply_customized_rope(q, k, cos, sin, position_ids, training=True): if q.device.type == "hpu" and FusedRoPE: # use fused hpu op return apply_customized_rope_module(q, k, cos, sin, position_ids, training) else: return apply_rotary_pos_emb(q, k, cos, sin, position_ids) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q: torch.Tensor, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ b, h, s, d = q.shape q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) if q.device.type == "hpu" and FusedRoPE: return FusedRoPE.apply( q, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ) else: cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) return q_embed class DeepseekV3MLP(nn.Module): def __init__(self, config, hidden_size=None, intermediate_size=None): super().__init__() self.config = config self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class MoEGate(nn.Module): def __init__(self, config): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.routed_scaling_factor = config.routed_scaling_factor self.scoring_func = config.scoring_func self.seq_aux = config.seq_aux self.topk_method = config.topk_method self.n_group = config.n_group self.topk_group = config.topk_group # topk selection algorithm self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) if self.topk_method == "noaux_tc": self.e_score_correction_bias = nn.Parameter(torch.empty((self.n_routed_experts))) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape ### compute gating score hidden_states = hidden_states.view(-1, h) logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None) if self.scoring_func == "sigmoid": scores = logits.sigmoid() else: raise NotImplementedError(f"insupportable scoring function for MoE gating: {self.scoring_func}") ### select top-k experts if self.topk_method == "noaux_tc": assert not self.training scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) group_scores = ( scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1) ) # [n, n_group] group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group] group_mask = torch.zeros_like(group_scores) # [n, n_group] group_mask.scatter_(1, group_idx, 1) # [n, n_group] score_mask = ( group_mask.unsqueeze(-1) .expand(bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group) .reshape(bsz * seq_len, -1) ) # [n, e] tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e] _, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False) topk_weight = scores.gather(1, topk_idx) else: raise NotImplementedError(f"insupportable TopK function for MoE gating: {self.topk_method}") ### norm gate to sum 1 if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor return topk_idx, topk_weight class DeepseekV3MoE(nn.Module): """ A mixed expert module containing shared experts. """ def __init__(self, config): super().__init__() self.config = config self.num_experts_per_tok = config.num_experts_per_tok if hasattr(config, "ep_size") and config.ep_size > 1: assert config.ep_size == dist.get_world_size() self.ep_size = config.ep_size self.experts_per_rank = config.n_routed_experts // config.ep_size self.ep_rank = dist.get_rank() self.experts = nn.ModuleList( [ ( DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size) if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank else None ) for i in range(config.n_routed_experts) ] ) else: self.ep_size = 1 self.experts_per_rank = config.n_routed_experts self.ep_rank = 0 self.experts = nn.ModuleList( [ DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size) for i in range(config.n_routed_experts) ] ) self.gate = MoEGate(config) if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = DeepseekV3MLP(config=config, intermediate_size=intermediate_size) # Slice experts for max experts supported by fused dynamic mixture_of_experts op self.expert_slice = math.ceil(self.experts_per_rank / SLICE_MAX_EXPERT) self.expert_chunk = math.ceil(self.experts_per_rank / self.expert_slice) def forward(self, hidden_states): identity = hidden_states orig_shape = hidden_states.shape topk_idx, topk_weight = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) # we cast back to the input dtype topk_weight = topk_weight.to(hidden_states.dtype) batch = orig_shape[0] sequence_length = orig_shape[1] hidden_dim = orig_shape[2] # changes for expert parallelism -- replacement for moe_infer() if self.training: padded_weights = torch.zeros( (batch * sequence_length, self.config.n_routed_experts), dtype=topk_weight.dtype, device=topk_weight.device, ) padded_weights.scatter_(-1, topk_idx, topk_weight) padded_weights = padded_weights.reshape(-1, sequence_length, self.config.n_routed_experts) padded_weights = padded_weights.permute(2, 0, 1).unsqueeze(-1) final_hidden_states = torch.zeros( (batch, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) for i, expert in enumerate(self.experts): current_hidden_state = expert(hidden_states) current_padded_weight = padded_weights[i] final_hidden_states = ( final_hidden_states + current_hidden_state.reshape(-1, sequence_length, hidden_dim) * current_padded_weight ) final_hidden_states = final_hidden_states.type(hidden_states.dtype) final_hidden_states = final_hidden_states.view(*orig_shape) # final_hidden_states = AddAuxiliaryLoss.apply(final_hidden_states, aux_loss) else: final_hidden_states = torch.zeros( (batch * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # changes to support hpu fused dynamic MoE op -- replacement for moe_infer() # loop through expert slices due to limits on max. experts supported by mixture_of_experts op for idx in range(self.expert_slice): experts_min = (self.ep_rank * self.experts_per_rank) + (self.expert_chunk * idx) experts_max = min((experts_min + self.expert_chunk), (self.ep_rank + 1) * self.experts_per_rank) experts_range = range(experts_min, experts_max) gate_proj_list = [self.experts[i].gate_proj.weight.squeeze() for i in experts_range] down_proj_list = [self.experts[i].down_proj.weight.squeeze() for i in experts_range] up_proj_list = [self.experts[i].up_proj.weight.squeeze() for i in experts_range] hidden_states_slice = torch.ops.hpu.mixture_of_experts( hidden_states=hidden_states, expert_routing_table=topk_idx, router_weights=topk_weight, w1=gate_proj_list, w2=up_proj_list, w3=down_proj_list, permuted_weights=True, activation="silu", experts_min=experts_min, experts_max=experts_max - 1, ) final_hidden_states = final_hidden_states + hidden_states_slice htcore.mark_step() if self.ep_size > 1: final_hidden_states = _all_reduce(final_hidden_states) elif is_deepspeed_available(): from deepspeed import comm as dist if dist.is_initialized(): dist.all_reduce(final_hidden_states, op=dist.ReduceOp.SUM) final_hidden_states = final_hidden_states.type(hidden_states.dtype) final_hidden_states = final_hidden_states.reshape(-1, sequence_length, hidden_dim) if self.config.n_shared_experts is not None: final_hidden_states = final_hidden_states + self.shared_experts(identity) return final_hidden_states # Functional apis need to be wrapped in classes for quantization on hpu class Matmul(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return torch.matmul(x, y) def gaudi_deepseekv3_repeat_kv( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, n_rep: int, ): """ Copied from repeat_kv: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py The only differences are: - Append num_key_value_heads == 1 check as kv states can be broadcasted during matmuls so need to expand and reshape them. - Add new args query_states, key_states, value_states and attention_mask and update the logic for expansion. The query states go from (batch, num_heads, seqlen, head_dim) to (batch, num_key_value_heads, n_rep, seqlen, head_dim) The key/value states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_key_value_heads, 1, seqlen, head_dim) """ batch, num_key_value_heads, kv_len, head_dim = key_states.shape if n_rep == 1 or num_key_value_heads == 1: return query_states, key_states, value_states, attention_mask new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim) key_states = key_states.reshape(new_kv_shape) value_states = value_states.reshape(new_kv_shape) batch, q_heads, q_len, head_dim = query_states.shape new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim) query_states = query_states.reshape(new_q_shape) if attention_mask is not None: # Add groups dim and set to 1 attention_mask = attention_mask.unsqueeze(1) return query_states, key_states, value_states, attention_mask # hpu specific. kv cache handling. similar to optimum-habana deepseek_v2 class KVCache(torch.nn.Module): def __init__(self): super(KVCache, self).__init__() self.cache = None self.inp_seq_len = -1 def allocate(self, inp_seq_len, dtype, device, shape): if self.cache is None or self.cache.shape != shape: self.inp_seq_len = inp_seq_len self.cache = torch.zeros(shape, dtype=dtype, device=device) else: assert self.inp_seq_len == inp_seq_len, ( f"inp_seq_len must be the same. self.inp_seq_len:{self.inp_seq_len} inp_seq_len:{inp_seq_len}" ) self.cache.fill_(0) def update(self, prev, cur, dim, idx, inp_seq_len): orig_cur = cur if prev.shape == cur.shape: prev.copy_(cur) return orig_cur if cur.shape[1] > 1 and cur.shape[1] <= prev.shape[1]: # Initialize prev[:, :inp_seq_len, :].copy_(cur) return orig_cur assert cur.shape[1] == 1, f"Cannot update kv-cache. Unsupported shapes. prev:{prev.shape} cur:{cur.shape}" if idx is not None: prev.index_copy_(dim, idx - 1, cur) return prev else: return torch.cat((prev, cur), dim=dim) def get_shape(self): if self.cache is None: return None return self.cache.shape def forward(self, cur, dim, idx): return self.update(self.cache, cur, dim, idx, self.inp_seq_len) # hpu specific fused op. wrapped in a class as functional apis not supported for quantization class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA self.scale = scale self.attention_dropout = attention_dropout self.enable_recompute = enable_recompute self.flash_attention_fp8 = flash_attention_fp8 def forward( self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side="left", ): return self._hpu_kernel_fsdpa.apply( query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side, ) # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3 class DeepseekV3Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.q_lora_rank = config.q_lora_rank self.qk_rope_head_dim = config.qk_rope_head_dim self.kv_lora_rank = config.kv_lora_rank self.v_head_dim = config.v_head_dim self.qk_nope_head_dim = config.qk_nope_head_dim self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim self.is_causal = True if self.q_lora_rank is None: self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.q_head_dim, bias=False) else: self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias) self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank) self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False) self.kv_a_proj_with_mqa = nn.Linear( self.hidden_size, config.kv_lora_rank + config.qk_rope_head_dim, bias=config.attention_bias, ) self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank) self.kv_b_proj = nn.Linear( config.kv_lora_rank, self.num_heads * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), bias=False, ) self.o_proj = nn.Linear( self.num_heads * self.v_head_dim, self.hidden_size, bias=config.attention_bias, ) self._init_rope() self.num_key_value_groups = self.num_heads // config.num_key_value_heads # hpu specific wrapping functional api into nn.module classes for quantization self.matmul_qk = Matmul() self.matmul_av = Matmul() self.k_cache = KVCache() self.v_cache = KVCache() self.inp_seq_len = -1 self.softmax_scale = self.q_head_dim ** (-0.5) if self.config.rope_scaling is not None: mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) scaling_factor = self.config.rope_scaling["factor"] if mscale_all_dim: mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) self.softmax_scale = self.softmax_scale * mscale * mscale self.norm_factor = self.softmax_scale # hpu specific warpping functional api into nn.module classes for quantization self.fused_scaled_dot_product_attention = ( ModuleFusedSDPA( FusedSDPA, scale=self.norm_factor, attention_dropout=self.attention_dropout, enable_recompute=False, flash_attention_fp8=getattr(config, "flash_attention_fp8", False), ) if FusedSDPA else None ) def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = DeepseekV3RotaryEmbedding( self.qk_rope_head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding( self.qk_rope_head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding( self.qk_rope_head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "yarn": kwargs = { key: self.config.rope_scaling[key] for key in [ "original_max_position_embeddings", "beta_fast", "beta_slow", "mscale", "mscale_all_dim", ] if key in self.config.rope_scaling } self.rotary_emb = DeepseekV3YarnRotaryEmbedding( self.qk_rope_head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, **kwargs, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") # hpu-specific, similar to other model files in OH def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): compressed_kv_cache_shape = (batch_size, max_seq_len, self.kv_lora_rank) k_pe_cache_shape = (batch_size, max_seq_len, self.qk_rope_head_dim) device = self.kv_a_proj_with_mqa.weight.device dtype = self.config.torch_dtype self.k_cache.allocate(inp_seq_len, dtype, device, compressed_kv_cache_shape) self.v_cache.allocate(inp_seq_len, dtype, device, k_pe_cache_shape) def update_sincos_cache(self, seq_len): # Call rotary emb forward() to update cos/sin cache when inferring more than self.max_position_embeddings # This helps in avoiding creation of these caches during actual model forward pass and # reduce memory consumption and improve performance. if seq_len > self.max_position_embeddings: self.max_position_embeddings = seq_len _, _ = self.rotary_emb(self.k_b_proj.weight, seq_len=seq_len) def reorder(self, tensor, beam_idx, dim_a, dim_b): updated = tensor.index_select(0, beam_idx) tensor.copy_(updated) def reorder_kv_cache(self, beam_idx: torch.LongTensor): if self.k_cache.cache is None: return (None, None) head_dim = self.k_cache.cache.size(-1) seq_length = self.k_cache.cache.size(-2) self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim) self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim) return (self.k_cache.cache.shape, self.v_cache.cache.shape) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2).contiguous() def split_kv_b_proj(self): kv_b_proj_weight = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank) self.q_absorb = kv_b_proj_weight[:, : self.qk_nope_head_dim, :].unsqueeze(0).transpose(0, 1) self.out_absorb = kv_b_proj_weight[:, self.qk_nope_head_dim :, :].unsqueeze(0) def compress_kv( self, hidden_states_kv: torch.Tensor, kv_position_ids: torch.LongTensor, past_key_value: Optional[Cache] = None, ) -> torch.Tensor: # return the RoPE'ed & compressed kv bsz, kv_seq_len, _ = hidden_states_kv.size() compressed_kv = self.kv_a_proj_with_mqa(hidden_states_kv) compressed_kv, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) compressed_kv = self.kv_a_layernorm(compressed_kv) k_pe = k_pe.view(bsz, kv_seq_len, 1, self.qk_rope_head_dim).transpose(1, 2) cos, sin = self.rotary_emb.cos_cached, self.rotary_emb.sin_cached k_pe = apply_rotary_pos_emb(k_pe, cos, sin, kv_position_ids).view(bsz, kv_seq_len, self.qk_rope_head_dim) return compressed_kv, k_pe def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, token_idx: Optional[torch.Tensor] = None, reuse_cache: Optional[bool] = False, cache_idx: int = None, cache_position: Optional[torch.LongTensor] = None, attn_softmax_bf16: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """ Attention masks and past cache are removed. Input: - hidden_states: [bsz, q_len, hidden_size] - position_ids: [bsz, q_len] """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) if self.training: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() if self.q_lora_rank is None: q = self.q_proj(hidden_states) else: q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) compressed_kv = self.kv_a_proj_with_mqa(hidden_states) compressed_kv, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) kv = ( self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) .transpose(1, 2) ) k_nope, value_states = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) kv_seq_len = value_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) if token_idx is None: if hasattr(past_key_value, "get_usable_length"): kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value[0].shape[-2] else: if num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2]: kv_seq_len = past_key_value[0].shape[-2] + kv_seq_len else: kv_seq_len = past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) q_pe, k_pe = apply_customized_rope(q_pe, k_pe, cos, sin, position_ids, self.training) query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) query_states[:, :, :, : self.qk_nope_head_dim] = q_nope query_states[:, :, :, self.qk_nope_head_dim :] = q_pe key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) key_states[:, :, :, : self.qk_nope_head_dim] = k_nope key_states[:, :, :, self.qk_nope_head_dim :] = k_pe if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs ) # hpu specific optimization, similar to other modeling files in optimum-habana if use_flash_attention and FusedSDPA is not None: if q_len == 1: # next token attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, "None", False, None, "None", ) else: # first token softmax_mode = "fast" if flash_attention_fast_softmax else "None" if flash_attention_causal_mask: attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, None, 0.0, True, None, softmax_mode, flash_attention_recompute, valid_sequence_lengths, "left", ) else: attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode, flash_attention_recompute, None, "None", ) else: query_states, key_states, value_states, attention_mask = gaudi_deepseekv3_repeat_kv( query_states, key_states, value_states, attention_mask, self.num_key_value_groups ) attn_weights = self.matmul_qk(query_states, key_states.transpose(-2, -1)) * self.softmax_scale htcore.mark_step() if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask if cache_position is not None: causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask.float() if attn_softmax_bf16: attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( query_states.dtype ) attn_weights = torch.nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training ) attn_output = self.matmul_av(attn_weights, value_states) else: # inference hidden_states_q = hidden_states hidden_states_kv = hidden_states self.split_kv_b_proj() q_position_ids = position_ids kv_position_ids = position_ids bsz, q_len, _ = hidden_states_q.size() if self.q_lora_rank is None: q = self.q_proj(hidden_states_q) else: q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states_q))) q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) kv_seq_len = q_pe.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) if token_idx is None: if hasattr(past_key_value, "get_usable_length"): kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache: kv_seq_len = past_key_value[0][-2] else: kv_seq_len = past_key_value[0].shape[-2] cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len) q_pe = apply_rotary_pos_emb(q_pe, cos, sin, q_position_ids) q_nope = torch.matmul(q_nope.transpose(0, 1), self.q_absorb).transpose(0, 1) compressed_kv, k_pe = self.compress_kv(hidden_states_kv, kv_position_ids) # update & get all compressed_kv, k_pe if use_cache: if reuse_cache: if past_key_value is not None and isinstance(past_key_value[0], torch.Tensor): # prefix tuning case. attach past_key_value to generate first token. compressed_kv = torch.cat((past_key_value[0], compressed_kv), -2) k_pe = torch.cat((past_key_value[1], k_pe), -2) compressed_kv = self.k_cache(compressed_kv, 1, token_idx) k_pe = self.v_cache(k_pe, 1, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: dtype_1 = hidden_states.dtype device_1 = hidden_states.device past_key = torch.zeros(compressed_kv.shape, dtype=dtype_1, device=device_1) past_value = torch.zeros(k_pe.shape, dtype=dtype_1, device=device_1) past_key_value = (past_key, past_value) compressed_kv = self.k_cache.update( past_key_value[0], compressed_kv, 1, token_idx, self.inp_seq_len ) k_pe = self.v_cache.update(past_key_value[1], k_pe, 1, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (compressed_kv, k_pe) if cache_idx is not None and q_len == 1: compressed_kv = compressed_kv[:, :cache_idx, :] k_pe = k_pe[:, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] kv_seq_len = compressed_kv.shape[-2] else: past_key_value = None kv_seq_len = compressed_kv.size(1) k_pe = k_pe.view(bsz, 1, kv_seq_len, self.qk_rope_head_dim) attn_weights = ( torch.matmul(q_pe, k_pe.mT) + torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT) ) * self.softmax_scale if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) # Commenting below line as MMLU tasks are failing with this assertion # assert attention_mask is not None if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q_nope.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.einsum("bhql,blc->bhqc", attn_weights, compressed_kv) attn_output = torch.matmul(attn_output.permute(2, 1, 0, 3), self.out_absorb.mT).permute(2, 1, 0, 3) if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class DeepseekV3DecoderLayer(nn.Module): def __init__(self, config: DeepseekV3Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = DeepseekV3Attention(config=config, layer_idx=layer_idx) self.mlp = ( DeepseekV3MoE(config) if ( config.n_routed_experts is not None and layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0 ) else DeepseekV3MLP(config) ) self.input_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.self_attn.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.self_attn.update_sincos_cache(seq_len) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, token_idx: Optional[torch.Tensor] = None, reuse_cache: Optional[bool] = False, cache_idx: int = None, cache_position: Optional[torch.LongTensor] = None, attn_softmax_bf16: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, token_idx=token_idx, reuse_cache=reuse_cache, cache_idx=cache_idx, cache_position=cache_position, attn_softmax_bf16=attn_softmax_bf16, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, num_virtual_tokens=num_virtual_tokens, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs DeepseekV3_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DeepseekV3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", DeepseekV3_START_DOCSTRING, ) class DeepseekV3PreTrainedModel(PreTrainedModel): config_class = DeepseekV3Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DeepseekV3DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = False _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() DeepseekV3_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", DeepseekV3_START_DOCSTRING, ) class DeepseekV3Model(DeepseekV3PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`] Args: config: DeepseekV3Config """ def __init__(self, config: DeepseekV3Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [DeepseekV3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = "eager" self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): for layer in self.layers: layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers) def update_sincos_cache(self, seq_len): for layer in self.layers: layer.update_sincos_cache(seq_len) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, cache_idx: int = None, lazy_mode: Optional[bool] = True, valid_sequence_lengths: Optional[torch.Tensor] = None, num_virtual_tokens: int = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # 4d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None if attention_mask is not None: attention_mask = _gaudi_prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None if lazy_mode: htcore.mark_step() for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if ( lazy_mode and not self.training and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1) ): htcore.mark_step() layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, token_idx=token_idx, ) if ( lazy_mode and not self.training and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1) ): htcore.mark_step() hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = DeepseekV3Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) self.kv_cache_len = max_seq_len def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.model.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.model.update_sincos_cache(seq_len) @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, token_idx: Optional[torch.Tensor] = None, trim_logits: Optional[bool] = False, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, token_idx=token_idx, ) hidden_states = outputs[0] _, seq_len, _ = hidden_states.shape if seq_len > 1 and trim_logits and not self.training: if token_idx is not None: hidden_states = hidden_states.index_select(1, token_idx - 1) else: hidden_states = hidden_states[:, -1, :] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): token_idx = kwargs.get("token_idx") past_length = 0 max_cache_length = None if past_key_values is not None: if token_idx is not None: input_ids = torch.index_select(input_ids, 1, token_idx - 1) else: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: if token_idx is not None: position_ids = torch.index_select(position_ids, 1, token_idx - 1) else: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "token_idx": token_idx, "trim_logits": kwargs.get("trim_logits"), } ) return model_inputs @add_start_docstrings( """ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer). [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, DeepseekV3_START_DOCSTRING, ) class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = DeepseekV3Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )