optimum/habana/transformers/models/gemma/modeling_gemma.py (709 lines of code) (raw):

# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Gemma model.""" import math import os from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.models.gemma.modeling_gemma import ( GemmaAttention, GemmaConfig, GemmaDecoderLayer, GemmaForCausalLM, GemmaMLP, GemmaModel, KwargsForCausalLM, apply_rotary_pos_emb, ) from transformers.processing_utils import Unpack from transformers.utils import logging from ...modeling_attn_mask_utils import ( _gaudi_prepare_4d_causal_attention_mask, ) from ...modeling_rope_utils import GaudiRotaryEmbedding try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None import habana_frameworks.torch.core as htcore logger = logging.get_logger(__name__) def gaudi_gemma_repeat_kv( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, n_rep: int, ): batch, num_key_value_heads, kv_len, head_dim = key_states.shape if n_rep == 1 or num_key_value_heads == 1: return query_states, key_states, value_states, attention_mask new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim) key_states = key_states.reshape(new_kv_shape) value_states = value_states.reshape(new_kv_shape) batch, _, q_len, head_dim = query_states.shape new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim) query_states = query_states.reshape(new_q_shape) if attention_mask is not None: # Add groups dim and set to 1 attention_mask = attention_mask.unsqueeze(1) return query_states, key_states, value_states, attention_mask class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA def forward( self, query, key, value, attn_mask, dropout_p, is_casual, scale, enable_recompute, ): import habana_frameworks.torch.hpu as ht with ht.sdp_kernel(enable_recompute=enable_recompute): return self._hpu_kernel_fsdpa.apply( query, key, value, attn_mask, dropout_p, is_casual, scale, ) class Matmul(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return torch.matmul(x, y) class KVCache(torch.nn.Module): def __init__(self): super(KVCache, self).__init__() self.cache = None self.inp_seq_len = -1 def allocate(self, inp_seq_len, dtype, device, shape): if self.cache is None or self.cache.shape != shape: self.inp_seq_len = inp_seq_len self.cache = torch.zeros(shape, dtype=dtype, device=device) else: assert self.inp_seq_len == inp_seq_len, ( f"inp_seq_len must be the same. self.inp_seq_len:{self.inp_seq_len} inp_seq_len:{inp_seq_len}" ) self.cache.fill_(0) def update(self, prev, cur, dim, idx, inp_seq_len): orig_cur = cur if prev.shape == cur.shape: prev.copy_(cur) return orig_cur if cur.shape[2] > 1 and cur.shape[2] <= prev.shape[2]: # Initialize prev[:, :, :inp_seq_len, :].copy_(cur) return orig_cur assert cur.shape[2] == 1, f"Cannot update kv-cache. Unsupported shapes. prev:{prev.shape} cur:{cur.shape}" if idx is not None: prev.index_copy_(dim, idx - 1, cur) return prev else: return torch.cat((prev, cur), dim=dim) def get_shape(self): if self.cache is None: return None return self.cache.shape def forward(self, cur, dim, idx): return self.update(self.cache, cur, dim, idx, self.inp_seq_len) def gaudi_eager_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, attn_softmax_bf16: bool = False, **kwargs, ): bsz, q_len = kwargs["input_shape"] query_states, key_states, value_states, attention_mask = gaudi_gemma_repeat_kv( query, key, value, attention_mask, module.num_key_value_groups ) attn_weights = module.matmul_qk(query_states, key_states.transpose(-2, -1)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask if attn_softmax_bf16: attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = torch.nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = module.matmul_av(attn_weights, value_states) attn_output = attn_output.reshape(bsz, -1, q_len, module.head_dim) return attn_output, attn_weights class GaudiGemmaAttention(GemmaAttention): def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) config.rope_scaling = config.rope_scaling if hasattr(config, "rope_scaling") else None self.matmul_qk = Matmul() self.matmul_av = Matmul() self.k_cache = KVCache() self.v_cache = KVCache() self.inp_seq_len = -1 self.block_size = 4096 self.num_key_value_heads = config.num_key_value_heads self.rotary_emb = GaudiRotaryEmbedding(config=self.config) self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): cache_shape = (batch_size, self.num_key_value_heads, max_seq_len, self.head_dim) device = self.k_proj.weight.device dtype = self.config.torch_dtype self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape) self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape) def update_sincos_cache(self, seq_len): # Call rotary emb forward() to update cos/sin cache when infering more than self.max_position_embeddings # This helps in avoiding creation of these caches during actual model forward pass and # reduce memory consumption and improve performance. if seq_len > self.max_position_embeddings: self.max_position_embeddings = seq_len self.rotary_emb._set_cos_sin_cache(seq_len, self.k_proj.weight.device, self.k_proj.weight.dtype) def reorder(self, tensor, beam_idx, dim_a, dim_b): updated = tensor.index_select(0, beam_idx) tensor.copy_(updated) def reorder_kv_cache(self, beam_idx: torch.LongTensor): if self.k_cache.cache is None: return (None, None) head_dim = self.k_cache.cache.size(-1) seq_length = self.k_cache.cache.size(-2) self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim) self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim) return (self.k_cache.cache.shape, self.v_cache.cache.shape) def gaudi_flash_attn_v1( self, query_layer, key_layer, value_layer, attention_mask, dropout_rate, q_block_size, enable_recompute ): """ Gaudi version of Flash Attention V1 to support long sequence at prompt phase Causal mask is not supported in this optimization """ q_len = query_layer.size(-2) q_tiles = (q_len // q_block_size) if (q_len % q_block_size == 0) else math.ceil(q_len / q_block_size) q_padding = q_tiles * q_block_size - q_len query_layer = F.pad(query_layer, (0, 0, 0, q_padding), "constant", 0) if attention_mask is not None: attention_mask = F.pad(attention_mask, (0, 0, 0, q_padding), "constant", -10000.0) row_o_list = [] for i in range(q_tiles): s, e = i * q_block_size, (i + 1) * q_block_size row_q = query_layer[:, :, s:e, :] row_mask = attention_mask[:, :, s:e, :] attn_output_partial = self.fused_scaled_dot_product_attention( row_q, key_layer, value_layer, row_mask, dropout_rate, False, None, enable_recompute ) row_o_list.append(attn_output_partial) attn_output = torch.cat(row_o_list, dim=-2) if q_padding != 0: attn_output = attn_output[:, :, :-q_padding, :] return attn_output def pre_attn_forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, cache_idx: Optional[int] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """ The only differences are: - add new args token_idx - optimize KV cache - add new args attn_softmax_bf16 - add new args reuse_cache - add new args use_flash_attention - add new arg flash_attention_recompute """ input_shape = hidden_states.shape[:-1] q_len = input_shape[1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if token_idx is None: if hasattr(past_key_value, "get_usable_length"): kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache: kv_seq_len = past_key_value[0][-2] else: kv_seq_len = past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos[kwargs["position_ids"]], sin[kwargs["position_ids"]] ) if use_cache: # reuse k, v, self_attention if reuse_cache: key_states = self.k_cache(key_states, 2, token_idx) value_states = self.v_cache(value_states, 2, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: past_key = torch.zeros(key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device) past_value = torch.zeros( key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device ) past_key_value = (past_key, past_value) key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len) value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (key_states, value_states) if cache_idx is not None and q_len == 1: key_states = key_states[:, :, :cache_idx, :] value_states = value_states[:, :, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] kv_seq_len = key_states.shape[-2] else: past_key_value = None if use_flash_attention and FusedSDPA: attn_weights = None if q_len == 1: # next token use_recompute = True if os.getenv("QUANT_CONFIG", "") else False attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, use_recompute ) else: # first token if flash_attention_causal_mask: # causal masking on first token requires inputs to be of the same length attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, None, 0.0, True, None, flash_attention_recompute ) else: if q_len > 16384: attn_output = self.gaudi_flash_attn_v1( query_states, key_states, value_states, attention_mask, 0.0, self.block_size, flash_attention_recompute, ) htcore.mark_step() else: attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, flash_attention_recompute, ) else: attn_output, attn_weights = gaudi_eager_attention_forward( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, attn_softmax_bf16=attn_softmax_bf16, input_shape=input_shape, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value def attention_all_reduce(self, attn_output): if hasattr(self.o_proj, "all_reduce"): self.o_proj.all_reduce(attn_output) def post_attn_forward(self, attn_output): if hasattr(self.o_proj, "post_all_reduce"): return self.o_proj.post_all_reduce(attn_output) return attn_output class GaudiGemmaMLP(GemmaMLP): def pre_mlp_forward(self, x): inputs = self.act_fn(self.gate_proj(x)) * self.up_proj(x) output = self.down_proj(inputs) return output def mlp_all_reduce(self, x): if hasattr(self.down_proj, "all_reduce"): self.down_proj.all_reduce(x) def post_mlp_forward(self, x): if hasattr(self.down_proj, "post_all_reduce"): return self.down_proj.post_all_reduce(x) return x class GaudiGemmaDecoderLayer(GemmaDecoderLayer): def __init__(self, config: GemmaConfig, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = GaudiGemmaAttention(config, layer_idx) self.mlp = GaudiGemmaMLP(config) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.self_attn.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.self_attn.update_sincos_cache(seq_len) def pre_attn( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, cache_idx: Optional[int] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, present_key_value = self.self_attn.pre_attn_forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, cache_idx=cache_idx, ) return hidden_states, attn_weights, present_key_value def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, cache_idx: Optional[int] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Copied from GemmaDecoderLayer.forward: https://github.com/huggingface/transformers/blob/v4.38.1/src/transformers/models/gemma/modeling_gemma.py The only differences are: - add new args token_idx - add new args attn_softmax_bf16 """ residual = hidden_states hidden_states, self_attn_weights, present_key_value = self.pre_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, cache_idx=cache_idx, ) self.self_attn.attention_all_reduce(hidden_states) hidden_states, residual = self.post_attn_pre_mlp(hidden_states, residual) self.mlp.mlp_all_reduce(hidden_states) hidden_states = self.post_mlp(hidden_states, residual) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs def post_attn_pre_mlp(self, hidden_states, residual): hidden_states = self.self_attn.post_attn_forward(hidden_states) if self.training: hidden_states = hidden_states + residual residual = hidden_states else: residual.add_(hidden_states) hidden_states = residual hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp.pre_mlp_forward(hidden_states) return hidden_states, residual def post_mlp(self, hidden_states, residual): hidden_states = self.mlp.post_mlp_forward(hidden_states) if self.training: hidden_states = hidden_states + residual else: residual.add_(hidden_states) hidden_states = residual return hidden_states class GaudiGemmaModel(GemmaModel): def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): for layer in self.layers: layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers) def update_sincos_cache(self, seq_len): for layer in self.layers: layer.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, cache_idx: int = None, lazy_mode: Optional[bool] = True, **kwargs, # NOOP kwarg for now ) -> BaseModelOutputWithPast: """ Copied from GemmaModel.forward: https://github.com/huggingface/transformers/blob/v4.38.1/src/transformers/models/gemma/modeling_gemma.py The only differences are: - add new args token_idx """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache self._attn_implementation = "eager" if input_ids is not None and inputs_embeds is not None: raise ValueError("You must specify exactly one of input_ids or inputs_embeds") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) use_new_cache = False # Ignoring new Cache path for HPU past_seen_tokens = 0 if past_key_values is not None and use_cache: # kept for BC (cache positions) if reuse_cache: past_seen_tokens = past_key_values[0][0][2] else: if use_new_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_usable_length(seq_length) else: past_seen_tokens = past_key_values[0][0].shape[2] cache_position = None if position_ids is None: position_ids = torch.arange( past_seen_tokens, seq_length + past_seen_tokens, dtype=torch.long, device=inputs_embeds.device ) position_ids = position_ids.unsqueeze(0) # HPU specific mask generation if attention_mask is None or attention_mask.dim() != 4: attention_mask = _gaudi_prepare_4d_causal_attention_mask( attention_mask, input_ids.shape if input_ids is not None else (batch_size, seq_length), inputs_embeds, past_seen_tokens, ) # embed positions hidden_states = inputs_embeds normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype, device=inputs_embeds.device) hidden_states = hidden_states * normalizer # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if not use_new_cache else None if lazy_mode: htcore.mark_step() for layer_idx, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]): if ( lazy_mode and not self.training and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1) ): htcore.mark_step() if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, None, attn_softmax_bf16, False, use_flash_attention, flash_attention_recompute, flash_attention_causal_mask, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=None if past_key_values is None else past_key_values[layer_idx], output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, cache_idx=cache_idx, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class GaudiGemmaForCausalLM(GemmaForCausalLM): def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.model.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.model.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, reuse_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, token_idx: Optional[torch.Tensor] = None, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, attn_softmax_bf16: Optional[bool] = False, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: """ Inherits from GemmaForCausalLM: https://github.com/huggingface/transformers/blob/v4.38.1/src/transformers/models/gemma/modeling_gemma.py The only differences are: - add new args token_idx - add new args attn_softmax_bf16 """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, reuse_cache=reuse_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, token_idx=token_idx, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, attn_softmax_bf16=attn_softmax_bf16, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]).float() loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, num_logits_to_keep=0, **kwargs, ): """ Inherits from GemmaForCausalLM: https://github.com/huggingface/transformers/blob/v4.38.1/src/transformers/models/gemma/modeling_gemma.py The only differences are: - add new args token_idx - add token_idx into model_inputs - from step2 when enable KV cache, slice next_input_ids from input_ids base on the token_idx - from step2 when enable KV cache, slice next_position_ids from position_ids base on the token_idx """ token_idx = kwargs.get("token_idx", None) if past_key_values is not None: if token_idx is None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif ( input_ids.shape[1] != cache_position.shape[0] ): # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: # past_length += token_idx idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1 input_ids = torch.index_select(input_ids, 1, idx) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: if token_idx is not None: position_ids = torch.index_select(position_ids, 1, token_idx - 1) else: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) if token_idx is None: if past_key_value := getattr(self.model.layers[0].self_attn, "past_key_value", None): # generation with static cache past_length = past_key_value.get_seq_length() input_ids = input_ids[:, past_length:] position_ids = position_ids[:, past_length:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format)} model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "reuse_cache": kwargs.get("reuse_cache"), "attention_mask": attention_mask, "num_logits_to_keep": num_logits_to_keep, "token_idx": token_idx, "use_flash_attention": kwargs.get("use_flash_attention"), "flash_attention_recompute": kwargs.get("flash_attention_recompute"), "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"), "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"), } ) return model_inputs