optimum/habana/transformers/models/minicpm/configuration_minicpm.py (81 lines of code) (raw):

# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MiniCPM model configuration. Copied from https://huggingface.co/openbmb/MiniCPM3-4B/tree/6fcf8b4e629d01a435b96e898899e0b6d9bddb7a """ from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class MiniCPM3Config(PretrainedConfig): model_type = "minicpm3" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, qk_nope_head_dim=64, qk_rope_head_dim=32, q_lora_rank=768, kv_lora_rank=256, v_head_dim=None, head_dim=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=True, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, scale_emb=1, dim_model_base=1, scale_depth=1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.q_lora_rank = q_lora_rank self.kv_lora_rank = kv_lora_rank if v_head_dim is None: v_head_dim = qk_nope_head_dim self.v_head_dim = v_head_dim # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.scale_emb = scale_emb self.dim_model_base = dim_model_base self.scale_depth = scale_depth self.head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) try: import flash_attn # noqa self._attn_implementation = "flash_attention_2" except ImportError: pass