optimum/habana/transformers/models/mixtral/modeling_mixtral.py (728 lines of code) (raw):
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mixtral model."""
import math
from functools import partial
from typing import List, Optional, Tuple, Union
import habana_frameworks.torch.core as htcore
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.integrations.deepspeed import is_deepspeed_available
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from transformers.models.mixtral.modeling_mixtral import (
KwargsForCausalLM,
MixtralAttention,
MixtralBlockSparseTop2MLP,
MixtralDecoderLayer,
MixtralForCausalLM,
MixtralModel,
apply_rotary_pos_emb,
load_balancing_loss_func,
)
from transformers.processing_utils import Unpack
from transformers.utils import logging
from ....distributed.tensorparallel import _all_reduce
from ..llama.modeling_llama import GaudiLlamaRotaryEmbedding
from ..modeling_all_models import KVCache, apply_customized_rope_module
from .configuration_mixtral import MixtralConfig
try:
from habana_frameworks.torch.hpex.normalization import FusedRMSNorm
except ImportError:
print("Not using HPU fused kernel for RMSNorm")
FusedRMSNorm = None
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
try:
from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE
except ImportError:
print("Not using HPU fused kernel for apply_rotary_pos_emb")
FusedRoPE = None
deepspeed_available = is_deepspeed_available()
logger = logging.get_logger(__name__)
# FusedScaledDotProductAttention
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
def forward(
self,
query,
key,
value,
attn_mask,
dropout_p,
is_causal,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths=None,
padding_side="left",
):
return self._hpu_kernel_fsdpa.apply(
query,
key,
value,
attn_mask,
dropout_p,
is_causal,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side,
)
def apply_customized_rope(q, k, cos, sin, position_ids, training=True):
if q.device.type == "hpu" and FusedRoPE is not None:
return apply_customized_rope_module(q, k, cos, sin, position_ids, training)
else:
return apply_rotary_pos_emb(q, k, cos, sin, position_ids)
def gaudi_mixtral_rmsnorm_forward(self, hidden_states):
"""
Copied from MixtralRMSNorm.forward: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py
The only differences are:
- override RMSNorm with Habana fused RMSNorm
"""
if hidden_states.device.type == "hpu" and FusedRMSNorm is not None:
# mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype
if hidden_states.dtype != self.weight.dtype:
orig_dtype = hidden_states.dtype
hidden_states = FusedRMSNorm.apply(hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon)
return hidden_states.to(orig_dtype)
else:
hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon)
return hidden_states
else:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def gaudi_mixtral_repeat_kv(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: torch.Tensor,
n_rep: int,
):
"""
Copied from repeat_kv: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py
The only differences are:
- Append num_key_value_heads == 1 check as kv states can be broadcasted during matmuls so need to expand and reshape them.
- Add new args query_states, key_states, value_states and attention_mask and update the logic for expansion.
The query states go from (batch, num_heads, seqlen, head_dim) to (batch, num_key_value_heads, n_rep, seqlen, head_dim)
The key/value states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_key_value_heads, 1, seqlen, head_dim)
"""
batch, num_key_value_heads, kv_len, head_dim = key_states.shape
if n_rep == 1 or num_key_value_heads == 1:
return query_states, key_states, value_states, attention_mask
new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim)
key_states = key_states.reshape(new_kv_shape)
value_states = value_states.reshape(new_kv_shape)
batch, _, q_len, head_dim = query_states.shape
new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim)
query_states = query_states.reshape(new_q_shape)
if attention_mask is not None:
# Add groups dim and set to 1
attention_mask = attention_mask.unsqueeze(1)
return query_states, key_states, value_states, attention_mask
class GaudiMixtralSparseMoeBlock(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
self.ep_size = config.ep_size if hasattr(config, "ep_size") else 1
if dist.is_initialized():
self.world_size = dist.get_world_size()
else:
self.world_size = 1
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
if self.ep_size > 1:
assert config.ep_size == dist.get_world_size()
ep_rank = dist.get_rank()
experts_per_rank = self.num_experts // self.ep_size
self.experts_min = experts_per_rank * ep_rank
self.experts_max = experts_per_rank * (ep_rank + 1) - 1
self.experts_range = range(self.experts_min, self.experts_max + 1)
self.experts = nn.ModuleList(
[
(MixtralBlockSparseTop2MLP(config) if i in self.experts_range else None)
for i in range(self.num_experts)
]
)
else:
self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
self.experts_min = 0
self.experts_max = self.num_experts - 1
self.experts_range = range(self.experts_min, self.experts_max + 1)
# Jitter parameters
self.jitter_noise = config.router_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
original_shape = hidden_states.shape
hidden_dim = original_shape[2]
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights, selected_experts = calculate_routing_tensors(router_logits, self.top_k, hidden_states.dtype)
# TODO
# This is a hack solution to avoid segmentation fault during SFT training.
# Remove this section after the issue is fixed.
if self.training:
final_hidden_states = self.call_sparse_moe_op(
shape=original_shape,
hidden_states=hidden_states,
expert_routing_table=selected_experts,
router_weights=routing_weights,
)
else:
final_hidden_states = self.call_dynamic_moe_op(
hidden_states=hidden_states,
expert_routing_table=selected_experts,
router_weights=routing_weights,
)
if self.ep_size > 1:
final_hidden_states = _all_reduce(final_hidden_states)
elif deepspeed_available and (not self.training):
from deepspeed import comm
if comm.is_initialized():
comm.all_reduce(final_hidden_states)
return final_hidden_states.view(original_shape), router_logits
def call_dynamic_moe_op(
self,
hidden_states,
expert_routing_table,
router_weights,
):
# pre-processing for custom op inputs
w1_list = [self.experts[i].w1.weight for i in self.experts_range]
w2_list = [self.experts[i].w2.weight for i in self.experts_range]
w3_list = [self.experts[i].w3.weight for i in self.experts_range]
return torch.ops.hpu.mixture_of_experts(
hidden_states=hidden_states,
expert_routing_table=expert_routing_table,
router_weights=router_weights,
w1=w1_list,
w3=w2_list,
w2=w3_list,
permuted_weights=True,
activation="silu",
experts_min=self.experts_min,
experts_max=self.experts_max,
)
def call_sparse_moe_op(
self,
shape,
hidden_states,
expert_routing_table,
router_weights,
):
dtype = hidden_states.dtype
device = hidden_states.device
padded_weights = torch.zeros((hidden_states.shape[0], self.num_experts), dtype=dtype, device=device)
padded_weights.scatter_(-1, expert_routing_table, router_weights)
padded_weights = padded_weights.view(shape[0], shape[1], self.num_experts).permute(2, 0, 1).unsqueeze(-1)
current_state_static = hidden_states
final_hidden_states = torch.zeros(shape, dtype=dtype, device=device)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
padded_weight = padded_weights[expert_idx]
current_hidden_states_static = expert_layer(current_state_static).view(shape) * padded_weight
final_hidden_states += current_hidden_states_static
# Support long sequences exceeding 8192
if not self.training and shape[1] > 8192:
htcore.mark_step()
return final_hidden_states
class GaudiMixtralAttentionLongSequence:
@staticmethod
def forward(fsdpa, q, k, v, mask, causal, q_block_size):
"""
Support long sequence at prompt phase
"""
q_len = q.size(-2)
q_tiles = (q_len // q_block_size) if (q_len % q_block_size == 0) else math.ceil(q_len / q_block_size)
q_padding = q_tiles * q_block_size - q_len
q = F.pad(q, (0, 0, 0, q_padding), "constant", 0)
if mask is not None:
mask = F.pad(mask, (0, 0, 0, q_padding), "constant", -10000.0)
attn_output = torch.zeros_like(q)
for i in range(q_tiles):
s, e = i * q_block_size, (i + 1) * q_block_size
row_q = q[:, :, s:e, :]
row_mask = mask[:, :, s:e, :]
attn_output[:, :, s:e, :] = fsdpa(row_q, k, v, row_mask, 0.0, causal, None)
if q_padding != 0:
attn_output = attn_output[:, :, :-q_padding, :]
return attn_output
def gaudi_eager_attention_forward(
module: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
bsz, q_len = kwargs["input_shape"]
query_states, key_states, value_states, attention_mask = gaudi_mixtral_repeat_kv(
query, key, value, attention_mask, module.num_key_value_groups
)
attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.reshape(bsz, -1, q_len, module.head_dim).contiguous()
return attn_output, attn_weights
class GaudiMixtralAttention(MixtralAttention):
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.config = config
self.k_cache = KVCache()
self.v_cache = KVCache()
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
self.inp_seq_len = -1
self.rotary_emb = GaudiLlamaRotaryEmbedding(config=config)
self.block_size = 1024
self.num_key_value_heads = config.num_key_value_heads
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
cache_shape = (batch_size, self.num_key_value_heads, max_seq_len, self.head_dim)
device = self.k_proj.weight.device
dtype = self.config.torch_dtype
self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape)
self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
cache_idx: int = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Copied from MixtralAttention.forward: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py
The only differences are:
- add new args token_idx
- optimize KV cache
- add new args reuse_cache
- add new args flash_attention_recompute
- add new args cache_idx
"""
input_shape = hidden_states.shape[:-1]
q_len = input_shape[1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if token_idx is None:
if hasattr(past_key_value, "get_usable_length"):
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
else:
kv_seq_len += past_key_value[0].shape[-2]
else:
if reuse_cache:
kv_seq_len = past_key_value[0][-2]
else:
kv_seq_len = past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_customized_rope(
query_states, key_states, cos, sin, kwargs["position_ids"], self.training
)
if use_cache:
if reuse_cache:
key_states = self.k_cache(key_states, 2, token_idx)
value_states = self.v_cache(value_states, 2, token_idx)
past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape())
else:
if past_key_value is None:
past_key = torch.zeros(key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device)
past_value = torch.zeros(
key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device
)
past_key_value = (past_key, past_value)
key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len)
value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len)
if token_idx is None:
past_key_value = (key_states, value_states)
if cache_idx is not None and q_len == 1:
key_states = key_states[:, :, :cache_idx, :]
value_states = value_states[:, :, :cache_idx, :]
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :cache_idx]
kv_seq_len = key_states.shape[-2]
else:
past_key_value = None
if self.fused_scaled_dot_product_attention is not None:
attn_weights = None
if query_states.dtype != key_states.dtype:
key_states = key_states.type(query_states.dtype)
value_states = value_states.type(query_states.dtype)
# support long sequences exceeding 8192
if not self.training and q_len == key_states.size(-2) and q_len > 8192:
htcore.mark_step()
attn_output = GaudiMixtralAttentionLongSequence.forward(
self.fused_scaled_dot_product_attention,
query_states,
key_states,
value_states,
attention_mask,
False,
self.block_size,
)
htcore.mark_step()
else:
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
0.0,
False,
None,
"None",
flash_attention_recompute,
)
else:
attn_output, attn_weights = gaudi_eager_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama
input_shape=input_shape,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
def calculate_routing_tensors(
score: torch.Tensor, topk: int, hidden_states_dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py#L641"""
routing_weights = F.softmax(score, dim=1, dtype=torch.float32)
routing_weights, selected_experts = torch.topk(routing_weights, topk, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(hidden_states_dtype)
return routing_weights, selected_experts
class GaudiMixtralDecoderLayer(MixtralDecoderLayer):
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = GaudiMixtralAttention(config, layer_idx)
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
cache_idx: int = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Copied from MixtralDecoderLayer.forward: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py
The only differences are:
- add new args token_idx
- add new args reuse_cache
- add new args flash_attention_recompute
- add new args cache_idx
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
token_idx=token_idx,
reuse_cache=reuse_cache,
flash_attention_recompute=flash_attention_recompute,
cache_idx=cache_idx,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class GaudiMixtralModel(MixtralModel):
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
for layer in self.layers:
layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
cache_idx: int = None,
**kwargs,
) -> MoeModelOutputWithPast:
"""
Copied from MixtralModel.forward: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py#L1069
The only differences are:
- add new args token_idx
- add new args reuse_cache
- add new args flash_attention_recompute
- add new args cache_idx
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = 0
use_new_cache = False # Ignoring new Cache path for HPU
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if past_key_values is not None and use_cache:
if reuse_cache:
past_key_values_length = past_key_values[0][0][2]
else:
if use_new_cache:
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length()
else:
past_key_values_length = past_key_values[0][0].shape[2]
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_seen_tokens = past_key_values.get_seq_length()
else:
past_seen_tokens = past_key_values[0][0].shape[2]
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.config._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = () if not use_new_cache else None
for layer_idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **kwargs),
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None if past_key_values is None else past_key_values[layer_idx],
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
token_idx=token_idx,
reuse_cache=reuse_cache,
flash_attention_recompute=flash_attention_recompute,
cache_idx=cache_idx,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
htcore.mark_step()
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
class GaudiMixtralForCausalLM(MixtralForCausalLM):
"""
Inherits from MixtralForCausalLM: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py#L1231
The only differences are:
- add new args token_idx
- add token_idx into model_inputs
- from step2 when enable KV cache, slice next_input_ids from input_ids base on the token_idx
- from step2 when enable KV cache, slice next_position_ids from position_ids base on the token_idx
"""
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
self.kv_cache_len = max_seq_len
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
token_idx: Optional[torch.Tensor] = None,
reuse_cache: Optional[bool] = None,
flash_attention_recompute: Optional[bool] = False,
cache_idx: int = None,
**kwargs: Unpack[KwargsForCausalLM],
) -> MoeCausalLMOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
token_idx=token_idx,
reuse_cache=reuse_cache,
flash_attention_recompute=flash_attention_recompute,
cache_idx=cache_idx,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :]).float()
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
output_router_logits=False,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
reuse_cache = kwargs.get("reuse_cache")
token_idx = kwargs.get("token_idx", None)
# Omit tokens covered by past_key_values
if past_key_values is not None:
if token_idx is not None:
idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1
input_ids = torch.index_select(input_ids, 1, idx)
else:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif (
input_ids.shape[1] != cache_position.shape[0]
): # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
elif reuse_cache and token_idx is not None:
# With reuse_cache, KV cache is pre allocated hence for the 1st token we can slice the inputs till token idx for the fwd pass
input_ids = input_ids[:, :token_idx]
attention_mask = attention_mask[:, :token_idx]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
if token_idx is not None:
position_ids = torch.index_select(position_ids, 1, token_idx - 1)
else:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"output_router_logits": output_router_logits,
"token_idx": token_idx,
"reuse_cache": reuse_cache,
"flash_attention_recompute": kwargs.get("flash_attention_recompute"),
"cache_idx": kwargs.get("cache_idx"),
}
)
return model_inputs