optimum/habana/transformers/models/mllama/modeling_mllama.py (1,031 lines of code) (raw):
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mllama model."""
import math
import os
from typing import List, Optional, Tuple, Union
import habana_frameworks.torch.core as htcore
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.models.mllama.configuration_mllama import (
MllamaConfig,
MllamaTextConfig,
)
from transformers.models.mllama.modeling_mllama import (
MllamaCrossAttentionDecoderLayer,
MllamaForCausalLM,
MllamaForConditionalGeneration,
MllamaSelfAttentionDecoderLayer,
MllamaTextCrossAttention,
MllamaTextModel,
MllamaTextRMSNorm,
MllamaTextSelfAttention,
MllamaVisionAttention,
MllamaVisionConfig,
MllamaVisionEncoder,
MllamaVisionEncoderLayer,
MllamaVisionModel,
_prepare_aspect_ratio_attention_mask,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging
from ...modeling_attn_mask_utils import _gaudi_prepare_4d_causal_attention_mask
try:
from habana_frameworks.torch.hpex.normalization import FusedRMSNorm as FusedRMSNorm
except ImportError:
print("Not using HPU fused kernel for RMSNorm")
FusedRMSNorm = None
logger = logging.get_logger(__name__)
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
class GaudiMllamaTextRMSNorm(MllamaTextRMSNorm):
def __init__(self, hidden_size, eps=1e-6):
"""
MllamaTextRMSNorm is equivalent to T5LayerNorm
"""
super().__init__(hidden_size, eps)
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
"""Copied from MllamaTextRMSNorm::forward https://github.com/huggingface/transformers/blob/53fad641cfdb5105e2470bcf3ef17ea8e25cc300/src/transformers/models/mllama/modeling_mllama.py#L475. The only differences are:
- Using FusedRMSNorm"""
orig_dtype = hidden_states.dtype
if FusedRMSNorm is not None:
hidden_states = FusedRMSNorm.apply(hidden_states.float(), self.weight.float(), self.variance_epsilon)
return hidden_states.to(orig_dtype)
else:
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(orig_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
def forward(self, query, key, value, attn_mask, dropout_p, is_casual, scale):
return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_casual, scale)
def _prepare_cross_attention_mask(
cross_attention_mask: torch.Tensor,
num_vision_tokens: int,
dtype: str,
token_idx: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Copied from _prepare_cross_attention_mask: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L99
The only differences are:
- if there's pading in cross_attention_mask in the right. do not masked it, or else it will impact softmax in crossattention
"""
# reshape so it can be used by attn module
# Updated cross_attention_mask alignment logic to ensure memory alignment with dtype size (256-byte boundary)
cross_attention_mask = cross_attention_mask.to(dtype)
dtype_size = (
torch.finfo(dtype).bits if torch.is_floating_point(torch.tensor(0, dtype=dtype)) else torch.iinfo(dtype).bits
)
alignment = int(256 / (dtype_size / 8))
aligned_num_vision_tokens = math.ceil(num_vision_tokens / alignment) * alignment
batch_size, text_total_length, _, original_dim = cross_attention_mask.shape
cross_attention_mask = cross_attention_mask.repeat_interleave(aligned_num_vision_tokens, dim=3)
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
cross_attention_mask = cross_attention_mask[:, :, : num_vision_tokens * original_dim]
cross_attention_mask = cross_attention_mask.unsqueeze(1)
# invert the mask
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
cross_attention_mask = inverted_cross_attn_mask.masked_fill(
inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min
)
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
# last dimension contains negative infinity values, otherwise it's 1
negative_inf_value = torch.finfo(dtype).min
full_text_row_masked_out_mask = (
(cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None]
)
if token_idx is not None:
cross_attention_mask_2 = cross_attention_mask[:, :, token_idx:, 1]
cross_attention_mask *= full_text_row_masked_out_mask
cross_attention_mask[:, :, token_idx:, 1] = cross_attention_mask_2
else:
cross_attention_mask *= full_text_row_masked_out_mask
return cross_attention_mask, full_text_row_masked_out_mask
class GaudiMllamaVisionSdpaAttention(MllamaVisionAttention):
def __init__(self, config: MllamaVisionConfig):
super().__init__(config)
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
# Adapted from MllamaVisionAttention
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
"""
Copied from MllamaVisionSdpaAttention::forward:https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L283
The only differences are:
- add use_flash_attention
"""
if output_attentions:
logger.warning_once(
"MllamaModel is using MllamaVisionSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_state=hidden_state,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
query = self.q_proj(hidden_state)
key = self.k_proj(hidden_state)
value = self.v_proj(hidden_state)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if use_flash_attention and FusedSDPA:
attn_output = self.fused_scaled_dot_product_attention(query, key, value, attention_mask, 0.0, False, None)
else:
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
return output, None
class GaudiMllamaVisionEncoderLayer(MllamaVisionEncoderLayer):
def __init__(self, config: MllamaVisionConfig, is_gated: bool = False):
super(GaudiMllamaVisionEncoderLayer, self).__init__(config=config, is_gated=is_gated)
self.self_attn = GaudiMllamaVisionSdpaAttention(config)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
):
"""
Copied from MllamaVisionEncoderLayer::forward:https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L348
The only differences are:
- add use_flash_attention
"""
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state, attn_weights = self.self_attn(
hidden_state, attention_mask=attention_mask, use_flash_attention=use_flash_attention
)
if self.is_gated:
hidden_state = self.gate_attn.tanh() * hidden_state
hidden_state = residual + hidden_state
# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
if self.is_gated:
hidden_state = self.gate_ffn.tanh() * hidden_state
hidden_state = residual + hidden_state
outputs = (hidden_state,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GaudiMllamaVisionEncoder(MllamaVisionEncoder):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutput]:
"""
Copied from MllamaVisionEncoder::forward:https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L394
The only differences are:
- add use_flash_attention
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_state=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
htcore.mark_step()
hidden_states = layer_outputs[0]
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class GaudiMllamaTextCrossAttention(MllamaTextCrossAttention):
def __init__(self, config: Optional[MllamaTextConfig] = None, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Copied from MllamaTextCrossAttention::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L512
The only differences are:
- add token_idx support
- add support if past_key_value is not Cache
- cache position is None
- add use_flash_attention and flash_attention_recompute
"""
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = self.q_norm(query_states)
if cross_attention_states is not None:
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if not (FusedSDPA and use_flash_attention):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_states = self.k_norm(key_states)
if past_key_value is not None:
# if we have a new image + new tokens, we only computed key_states on that new image
# we still update the cross key states, past_image, new_image. And use it!
if isinstance(past_key_value, Cache):
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
else:
if token_idx is not None:
past_key_value[0].index_copy_(2, token_idx - 1, key_states)
past_key_value[1].index_copy_(2, token_idx - 1, value_states)
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = torch.cat((past_key_value[0], key_states), dim=2)
value_states = torch.cat((past_key_value[1], value_states), dim=2)
if use_cache and not isinstance(past_key_value, Cache):
past_key_value = [key_states, value_states]
elif not isinstance(past_key_value, Cache) and past_key_value is not None:
key_states, value_states = (past_key_value[0], past_key_value[1])
elif cache_position is not None and cache_position[0] != 0:
key_states, value_states = (
past_key_value.key_cache[self.layer_idx],
past_key_value.value_cache[self.layer_idx],
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
if FusedSDPA and use_flash_attention:
import habana_frameworks.torch.hpu as ht
if q_len == 1:
# next token
use_recompute = True if os.getenv("QUANT_CONFIG", "") else False
with ht.sdp_kernel(enable_recompute=use_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask, 0.0, False, None
)
else:
with ht.sdp_kernel(enable_recompute=flash_attention_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask, 0.0, False, None
)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class GaudiMllamaTextSelfAttention(MllamaTextSelfAttention):
def __init__(self, config: Optional[MllamaTextConfig] = None, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value=None,
cache_position=None,
token_idx: Optional[torch.Tensor] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
**kwargs,
):
"""
Copied from MllamaTextSelfAttention::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L733
The only differences are:
- add token_idx support
- add support if past_key_value is not Cache
- add use_flash_attention and flash_attention_recompute
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
if isinstance(past_key_value, Cache):
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
else:
if token_idx is not None:
past_key_value[0].index_copy_(2, token_idx - 1, key_states)
past_key_value[1].index_copy_(2, token_idx - 1, value_states)
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = torch.cat((past_key_value[0], key_states), dim=2)
value_states = torch.cat((past_key_value[1], value_states), dim=2)
if use_cache and not isinstance(past_key_value, Cache):
past_key_value = [key_states, value_states]
if FusedSDPA and use_flash_attention:
import habana_frameworks.torch.hpu as ht
if q_len == 1:
# next token
use_recompute = True if os.getenv("QUANT_CONFIG", "") else False
with ht.sdp_kernel(enable_recompute=use_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask, 0.0, False, None
)
else:
with ht.sdp_kernel(enable_recompute=flash_attention_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask, 0.0, False, None
)
else:
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer
class GaudiMllamaSelfAttentionDecoderLayer(MllamaSelfAttentionDecoderLayer):
def __init__(self, config: MllamaTextConfig, layer_idx: int) -> None:
super(GaudiMllamaSelfAttentionDecoderLayer, self).__init__(config, layer_idx)
self.self_attn = GaudiMllamaTextSelfAttention(config, layer_idx=layer_idx)
self.input_layernorm = GaudiMllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
token_idx: Optional[torch.Tensor] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Copied from MllamaSelfAttentionDecoderLayer::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L904
The only differences are:
- add token_idx input
- add use_flash_attention and flash_attention_recompute
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
token_idx=token_idx,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class GaudiMllamaCrossAttentionDecoderLayer(MllamaCrossAttentionDecoderLayer):
def __init__(self, config: MllamaTextConfig, layer_idx: int) -> None:
super(GaudiMllamaCrossAttentionDecoderLayer, self).__init__(config, layer_idx)
self.cross_attn = GaudiMllamaTextCrossAttention(config, layer_idx=layer_idx)
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: torch.Tensor,
cross_attention_mask: torch.Tensor,
attention_mask: torch.Tensor,
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
token_idx: Optional[torch.Tensor] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
"""
Copied from MllamaCrossAttentionDecoderLayer::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L989
The only differences are:
- add token_idx support
- pass use_cache to cross_attn
- add use_flash_attention and flash_attention_recompute
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights, past_key_value = self.cross_attn(
hidden_states=hidden_states,
attention_mask=cross_attention_mask,
cross_attention_states=cross_attention_states,
past_key_value=past_key_value,
output_attentions=output_attentions,
cache_position=cache_position,
use_cache=use_cache,
token_idx=token_idx,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if full_text_row_masked_out_mask is not None:
hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states # type: ignore
hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
class GaudiMllamaTextModel(MllamaTextModel):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.FloatTensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Copied from MllamaTextModel::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L1617
The only differences are:
- add token_idx support
- add support if past_key_value is not Cache
- add use_flash_attention and flash_attention_recompute
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if isinstance(past_key_values, Cache):
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
else:
past_seen_tokens = past_key_values[0][0].shape[2] if past_key_values is not None else 0
ignore_cache_position = True # Ignoring cache position for HPU, or else hpu graph may has issue
if ignore_cache_position is False:
if cache_position is None:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
else:
if position_ids is None:
position_ids = torch.arange(
past_seen_tokens,
inputs_embeds.shape[1] + past_seen_tokens,
dtype=torch.long,
device=inputs_embeds.device,
)
position_ids = position_ids.unsqueeze(0)
cache_position = None
causal_mask = _gaudi_prepare_4d_causal_attention_mask(
attention_mask,
input_ids.shape,
inputs_embeds,
past_seen_tokens,
)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None if isinstance(past_key_values, Cache) else ()
for idx, decoder_layer in enumerate(self.layers):
if not self.training and (
not torch.distributed.is_initialized() or torch.distributed.get_world_size() == 1
):
htcore.mark_step()
if output_hidden_states:
all_hidden_states += (hidden_states,)
# For text-only path we should skip cross attention layers.
# Let's check if the layer is cross attention layer and if we have cross attention states
# or cached cross attention states.
is_cross_attention_layer = idx in self.cross_attention_layers
is_cross_attention_cache_empty = past_key_values is None or (
past_key_values is not None and past_key_values.get_seq_length(idx) == 0
if isinstance(past_key_values, Cache)
else False
)
if is_cross_attention_layer and cross_attention_states is None and is_cross_attention_cache_empty:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
cross_attention_states,
cross_attention_mask,
causal_mask,
full_text_row_masked_out_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
if isinstance(past_key_values, Cache):
past_key_value = past_key_values
else:
past_key_value = None if past_key_values is None else past_key_values[idx]
layer_outputs = decoder_layer(
hidden_states,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
attention_mask=causal_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
token_idx=token_idx,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = layer_outputs[0]
if use_cache:
if isinstance(past_key_values, Cache):
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
else:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
"""
Copied from MllamaTextModel::_update_causal_mask: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L1768
The only differences are:
- add support if past_key_value is not Cache
"""
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
if isinstance(past_key_values, Cache):
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
else:
past_seen_tokens = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
# TODO: we have only SDPA currently and there's a bug when attn-bias is passed. Need to add eager attn and return the line
# self.config._attn_implementation == "sdpa" and
if self.config._attn_implementation == "sdpa" and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
class GaudiMllamaForCausalLM(MllamaForCausalLM):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.LongTensor] = None,
cross_attention_mask: Optional[torch.LongTensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
token_idx: Optional[torch.Tensor] = None,
trim_logits: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
logits_bf16: Optional[bool] = False,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Copied from MllamaForCausalLM::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L1871
The only differences are:
- add token_idx input
- add logits handle if token_idx is not None
- add use_flash_attention and flash_attention_recompute
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
cross_attention_states=cross_attention_states,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
token_idx=token_idx,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = outputs[0]
_, seq_len, _ = hidden_states.shape
if seq_len > 1 and trim_logits and not self.training:
if token_idx is not None:
hidden_states = hidden_states.index_select(1, token_idx - 1)
else:
hidden_states = hidden_states[:, -1, :]
if token_idx is None and logits_to_keep != 0:
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
else:
logits = self.lm_head(hidden_states)
if not logits_bf16:
logits = logits.float()
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class GaudiMllamaForConditionalGeneration(MllamaForConditionalGeneration):
def __init__(self, config: MllamaConfig):
# sdpa is better for vision model in HPU
config._attn_implementation = "sdpa"
super().__init__(config)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
aspect_ratio_mask: Optional[torch.Tensor] = None,
aspect_ratio_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
token_idx: Optional[torch.Tensor] = None,
trim_logits: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
logits_bf16: Optional[bool] = False,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Copied from MllamaForConditionalGeneration::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L2077
The only differences are:
- add token_idx input
- add use_flash_attention and flash_attention_recompute
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and cross_attention_states is not None:
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
if pixel_values is not None:
if aspect_ratio_ids is None:
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
# get vision tokens from vision model
vision_outputs = self.vision_model(
pixel_values=pixel_values,
aspect_ratio_ids=aspect_ratio_ids,
aspect_ratio_mask=aspect_ratio_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
use_flash_attention=use_flash_attention,
)
cross_attention_states = vision_outputs[0]
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
-1, cross_attention_states.shape[-2], self.hidden_size
)
if cross_attention_mask is not None:
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
cross_attention_mask,
num_vision_tokens=self.vision_model.num_patches,
dtype=self.dtype,
token_idx=token_idx,
)
else:
full_text_row_masked_out_mask = None
if cross_attention_mask is not None:
if cache_position is not None:
cross_attention_mask = cross_attention_mask[:, :, cache_position]
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
elif past_key_values is not None:
if token_idx is not None:
cross_attention_mask = torch.index_select(cross_attention_mask, -2, token_idx - 1)
full_text_row_masked_out_mask = torch.index_select(
full_text_row_masked_out_mask, -2, token_idx - 1
)
else:
cross_attention_mask = cross_attention_mask[:, :, -1:]
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, -1:]
outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
labels=labels,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
token_idx=token_idx,
trim_logits=trim_logits,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
logits_bf16=logits_bf16,
**loss_kwargs,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
pixel_values=None,
aspect_ratio_ids=None,
aspect_ratio_mask=None,
cross_attention_mask=None,
past_key_values=None,
use_cache=False,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
"""
Copied from MllamaForConditionalGeneration::prepare_inputs_for_generation: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L2208
The only differences are:
- add token_idx handling
- add bucket_internal handling
- add use_flash_attention and flash_attention_recompute
"""
token_idx = kwargs.get("token_idx", None)
bucket_internal = kwargs.get("bucket_internal", None)
if past_key_values is not None:
if token_idx is not None:
input_ids = torch.index_select(input_ids, 1, token_idx - 1)
elif inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
elif bucket_internal and token_idx is not None:
# for the 1st token we can slice the inputs till token idx for the fwd pass.
input_ids = input_ids[:, :token_idx]
attention_mask = attention_mask[:, :token_idx]
if cross_attention_mask is not None:
cross_attention_mask = cross_attention_mask[:, :token_idx, ...]
# TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
if token_idx is not None:
position_ids = torch.index_select(position_ids, 1, token_idx - 1)
else:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if logits_to_keep is not None:
model_inputs["logits_to_keep"] = logits_to_keep
# keep cache_position implementation as None for HPU
cache_position = None
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"cross_attention_mask": cross_attention_mask,
"token_idx": token_idx,
"trim_logits": kwargs.get("trim_logits"),
"use_flash_attention": kwargs.get("use_flash_attention"),
"flash_attention_recompute": kwargs.get("flash_attention_recompute"),
"logits_bf16": kwargs.get("logits_bf16"),
}
)
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
# to compute image hidden states, otherwise they are cached within each cross attn layer
if (input_ids == self.config.image_token_index).any():
model_inputs["pixel_values"] = pixel_values
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
return model_inputs
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
"""
Copied from MllamaForConditionalGeneration::_update_model_kwargs_for_generation: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L2274
The only differences are:
- add token_idx handling
"""
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
model_kwargs = super(MllamaForConditionalGeneration, self)._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
# add cross-attn mask for new token
if cross_attention_mask_prev is not None:
token_idx = model_kwargs.get("token_idx", None)
token_idx_cpu = model_kwargs.get(
"token_idx_cpu", None
) # returns an integer so following slicing ops happen using int instead of tensor
if token_idx is not None:
mask = cross_attention_mask_prev[:, token_idx_cpu - 2 : token_idx_cpu - 1, ...]
cross_attention_mask_prev.index_copy_(1, token_idx - 1, mask)
model_kwargs["cross_attention_mask"] = cross_attention_mask_prev
else:
model_kwargs["cross_attention_mask"] = torch.cat(
[cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
)
return model_kwargs
class GaudiMllamaVisionModel(MllamaVisionModel):
def forward(
self,
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
aspect_ratio_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
"""
Copied from MllamaVisionModel::forward: https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/mllama/modeling_mllama.py#L1425
The only differences are:
- optimize perf of stage "Collect intermediate layer outputs from encoder output"
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_concurrent_media * num_tiles, num_channels, height, width)
aspect_ratio_ids = aspect_ratio_ids.reshape(batch_size * num_concurrent_media, -1)
# Patch embedding
target_dtype = self.patch_embedding.weight.dtype
target_device = self.patch_embedding.weight.device
patch_embeds = self.patch_embedding(pixel_values.to(target_device, target_dtype))
hidden_state = patch_embeds.flatten(2).transpose(1, 2)
# Tile embeddings
_, num_patches, dim = hidden_state.shape
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, -1, dim)
hidden_state = self.pre_tile_positional_embedding(hidden_state, aspect_ratio_ids)
# Add cls token
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media * num_tiles, num_patches, dim)
hidden_state = self.apply_class_embedding(hidden_state)
num_patches += 1
# Position embeddings
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, num_patches, dim)
hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = self.layernorm_pre(hidden_state)
# Compute the number of tokens to pad
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
# Compute padding tuple for pad function
padding = (0, 0, 0, num_padding_patches) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
# Pad the tensor
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
slice_index = -num_padding_patches if num_padding_patches > 0 else None
# Prepare attention mask
attention_mask = aspect_ratio_mask.reshape(batch_size * num_concurrent_media, -1)
attention_mask = _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask=attention_mask,
num_patches=self.num_patches,
target_length=hidden_state.shape[2],
dtype=self.dtype,
)
# Apply encoder
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
output = self.transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
)
hidden_state = output[0]
hidden_state = self.layernorm_post(hidden_state)
# Apply global encoder
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = self.post_tile_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles * (num_patches + num_padding_patches), dim
)
global_output = self.global_transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
)
hidden_state = global_output[0]
# Remove padding form hidden state
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = hidden_state[:, :, :slice_index]
hidden_state = hidden_state.reshape(batch_size, num_concurrent_media, num_tiles, num_patches, dim)
# Collect intermediate layer outputs from encoder output
all_intermediate_hidden_states = [output[1][i] for i in self.intermediate_layers_indices]
intermediate_hidden_states = torch.stack(all_intermediate_hidden_states, dim=-1)
"""
intermediate_hidden_states = torch.stack(all_intermediate_hidden_states, dim=-1)
intermediate_hidden_states = intermediate_hidden_states[..., self.intermediate_layers_indices]
"""
# Remove padding from intermediate hidden states
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, -1
)
intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, -1
)
# Concatenate final hidden state and intermediate hidden states
hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
if output_hidden_states:
hidden_states = tuple(all_intermediate_hidden_states) + tuple(global_output[1])
else:
hidden_states = None
if output_attentions:
# global transformer in contrast to `self.transformer` doesn't always return hidden states so we might go index out-of-range
global_attn = tuple(global_output[2]) if output_hidden_states else tuple(global_output[1])
attentions = tuple(output[2]) + global_attn
else:
attentions = None
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
attentions=attentions,
)