optimum/habana/transformers/models/qwen2/modeling_qwen2.py (931 lines of code) (raw):

# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### # Copyright (C) 2022-2024 Habana Labs, Ltd. an Intel Company ############################################################################### from functools import partial from typing import List, Optional, Tuple, Union import torch from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.models.qwen2.configuration_qwen2 import Qwen2Config from transformers.models.qwen2.modeling_qwen2 import ( KwargsForCausalLM, Qwen2Attention, Qwen2DecoderLayer, Qwen2ForCausalLM, Qwen2MLP, Qwen2Model, Qwen2RMSNorm, apply_rotary_pos_emb, logger, ) from transformers.processing_utils import Unpack from ....distributed import parallel_state from ...modeling_attn_mask_utils import ( _gaudi_prepare_4d_causal_attention_mask, ) from ...modeling_rope_utils import GaudiRotaryEmbedding from ..modeling_all_models import KVCache, Matmul, apply_customized_rope_module try: from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE # noqa has_fused_rope = True except ImportError: has_fused_rope = False print("Not using HPU fused kernel for apply_rotary_pos_emb") try: from habana_frameworks.torch.hpex.normalization import FusedRMSNorm as FusedRMSNorm has_fused_rms_norm = True except ImportError: has_fused_rms_norm = False print("Not using HPU fused kernel for RMSNorm") try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None import habana_frameworks.torch.core as htcore def gaudi_qwen2_rmsnorm_forward(self, hidden_states): if hidden_states.device.type == "hpu" and has_fused_rms_norm: # mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype if hidden_states.dtype != self.weight.dtype: orig_dtype = hidden_states.dtype hidden_states = FusedRMSNorm.apply(hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon) return hidden_states.to(orig_dtype) else: hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon) return hidden_states else: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class GaudiQwen2MLP(Qwen2MLP): def pre_mlp_forward(self, x): inputs = self.act_fn(self.gate_proj(x)) * self.up_proj(x) output = self.down_proj(inputs) return output def mlp_all_reduce(self, x): if hasattr(self.down_proj, "all_reduce"): self.down_proj.all_reduce(x) def post_mlp_forward(self, x): if hasattr(self.down_proj, "post_all_reduce"): return self.down_proj.post_all_reduce(x) return x def gaudi_qwen2_repeat_kv( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, n_rep: int, ): batch, num_key_value_heads, kv_len, head_dim = key_states.shape if n_rep == 1 or num_key_value_heads == 1: return query_states, key_states, value_states, attention_mask new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim) key_states = key_states.reshape(new_kv_shape) value_states = value_states.reshape(new_kv_shape) batch, _, q_len, head_dim = query_states.shape new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim) query_states = query_states.reshape(new_q_shape) if attention_mask is not None: # Add groups dim and set to 1 attention_mask = attention_mask.unsqueeze(1) return query_states, key_states, value_states, attention_mask # FusedScaledDotProductAttention class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA self.scale = scale self.attention_dropout = attention_dropout self.enable_recompute = enable_recompute self.flash_attention_fp8 = flash_attention_fp8 def forward( self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side="left", ): return self._hpu_kernel_fsdpa.apply( query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side, ) def gaudi_eager_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, attn_softmax_bf16: bool = False, **kwargs, ): bsz, q_len = kwargs["input_shape"] query_states, key_states, value_states, attention_mask = gaudi_qwen2_repeat_kv( query, key, value, attention_mask, module.num_key_value_groups ) query_states = query_states * scaling attn_weights = module.matmul_qk(query_states, key_states.transpose(-2, -1)).float() htcore.mark_step() if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask if attn_softmax_bf16: attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = torch.nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = module.matmul_av(attn_weights, value_states) attn_output = attn_output.reshape(bsz, -1, q_len, module.head_dim) return attn_output, attn_weights class GaudiDistributedAttention(torch.nn.Module): def __init__( self, hpu_module_fsdpa: ModuleFusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8 ): super().__init__() self._hpu_module_fsdpa = hpu_module_fsdpa if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1: from deepspeed.sequence.layer import DistributedAttention self._hpu_module_fsdpa_distributed = DistributedAttention( self._hpu_module_fsdpa, parallel_state.get_sequence_parallel_group(), 1, 2 ) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: torch.Tensor, dropout_p: float, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side="left", ): if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1: return self._hpu_module_fsdpa_distributed( query, key, value, 0, # As the shape for inputs is [B, N, S, H] None, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side, ) else: return self._hpu_module_fsdpa( query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side, ) def get_gaudi_distributed_attention( fused_scaled_dot_product_attention, fused_scaled_dot_product_attention_distributed ): if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1: return fused_scaled_dot_product_attention_distributed else: return fused_scaled_dot_product_attention class GaudiQwen2Attention(Qwen2Attention): def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.matmul_qk = Matmul() self.matmul_av = Matmul() self.k_cache = KVCache() self.v_cache = KVCache() self.inp_seq_len = -1 self.rotary_emb = GaudiRotaryEmbedding(config=self.config) self.fused_scaled_dot_product_attention = ( ModuleFusedSDPA( FusedSDPA, scale=self.scaling, attention_dropout=self.attention_dropout, enable_recompute=False, flash_attention_fp8=getattr(config, "flash_attention_fp8", False), ) if FusedSDPA else None ) # for all2all comm, Distributed Attention cares about sequence (s) and number of heads (h) dimensions. In HPU, they are at 1 and 2 indices self.fused_scaled_dot_product_attention_distributed = None if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1: self.fused_scaled_dot_product_attention_distributed = ( GaudiDistributedAttention( self.fused_scaled_dot_product_attention, scale=self.scaling, attention_dropout=self.attention_dropout, enable_recompute=False, flash_attention_fp8=getattr(config, "flash_attention_fp8", False), ) if FusedSDPA else None ) self.num_key_value_heads = config.num_key_value_heads def get_k_proj_weight(self): """4bit quantization in GPTQ replaces the k_proj.weight with qweight.""" if hasattr(self.k_proj, "qweight"): return self.k_proj.qweight return self.k_proj.weight def get_k_proj_weight_dtype(self): """4bit quantization in GPTQ replaces the k_proj.weight with qweight. Scales tensor gets the weight dtype.""" if hasattr(self.k_proj, "qweight"): return self.k_proj.scales.dtype return self.k_proj.weight.dtype def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): cache_shape = (batch_size, self.num_key_value_heads, max_seq_len, self.head_dim) device = self.get_k_proj_weight().device dtype = self.config.torch_dtype self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape) self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape) def update_sincos_cache(self, seq_len): # Call rotary emb forward() to update cos/sin cache when infering more than self.max_position_embeddings # This helps in avoiding creation of these caches during actual model forward pass and # reduce memory consumption and improve performance. if seq_len > self.max_position_embeddings: self.max_position_embeddings = seq_len _, _ = self.rotary_emb(self.get_k_proj_weight(), seq_len=seq_len) def reorder(self, tensor, beam_idx, dim_a, dim_b): updated = tensor.index_select(0, beam_idx) tensor.copy_(updated) def reorder_kv_cache(self, beam_idx: torch.LongTensor): if self.k_cache.cache is None: return (None, None) head_dim = self.k_cache.cache.size(-1) seq_length = self.k_cache.cache.size(-2) self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim) self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim) return (self.k_cache.cache.shape, self.v_cache.cache.shape) def pre_attn_forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """ The only differences are: - add new args token_idx - optimize KV cache - add new args attn_softmax_bf16 - add new args reuse_cache - add new args use_flash_attention - add new arg flash_attention_recompute - add new arg flash_attention_causal_mask - add new arg flash_attention_fast_softmax - add new arg num_virtual_tokens """ input_shape = hidden_states.shape[:-1] q_len = input_shape[1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if token_idx is None: if hasattr(past_key_value, "get_usable_length"): kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache and not isinstance(past_key_value[0], torch.Tensor): kv_seq_len = past_key_value[0][-2] else: if num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2]: kv_seq_len = past_key_value[0].shape[-2] + kv_seq_len else: kv_seq_len = past_key_value[0].shape[-2] seq_len = kv_seq_len if parallel_state.sequence_parallel_is_initialized(): seq_len = kv_seq_len * parallel_state.get_sequence_parallel_world_size() cos, sin = self.rotary_emb(value_states, seq_len=seq_len) # If sequence parallel in enabled, position_ids should be based on which part of the sequence is present in the rank # As we divide the inputs based on ranks, position_ids are generated to suit that part of the sequence if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_rank() > 0: position_ids = torch.arange( kv_seq_len * parallel_state.get_sequence_parallel_rank(), kv_seq_len * (parallel_state.get_sequence_parallel_rank() + 1), dtype=torch.long, device=query_states.device, ) position_ids = position_ids.unsqueeze(0) query_states, key_states = apply_customized_rope( query_states, key_states, cos, sin, kwargs["position_ids"], self.training ) if use_cache: # reuse k, v, self_attention if reuse_cache: if past_key_value is not None and isinstance(past_key_value[0], torch.Tensor): # prefix tuning case. attach past_key_value to generate first token. key_states = torch.cat((past_key_value[0], key_states), -2) value_states = torch.cat((past_key_value[1], value_states), -2) key_states = self.k_cache(key_states, 2, token_idx) value_states = self.v_cache(value_states, 2, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: past_key = torch.zeros( key_states.shape, dtype=self.get_k_proj_weight_dtype(), device=key_states.device ) past_value = torch.zeros( key_states.shape, dtype=self.get_k_proj_weight_dtype(), device=key_states.device ) # Return list instead of tuple past_key_value = [past_key, past_value] if ( token_idx is not None and num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2] ): # prefix tuning case. attach past_key_value to generate first token. key_states = torch.cat((past_key_value[0], key_states), -2) value_states = torch.cat((past_key_value[1], value_states), -2) past_key_value = (key_states, value_states) else: key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len) value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (key_states, value_states) if cache_idx is not None and q_len == 1: key_states = key_states[:, :, :cache_idx, :] value_states = value_states[:, :, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] kv_seq_len = key_states.shape[-2] else: past_key_value = None fused_scaled_dot_product_attention = get_gaudi_distributed_attention( self.fused_scaled_dot_product_attention, self.fused_scaled_dot_product_attention_distributed ) sliding_window = None if ( self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers ): sliding_window = self.config.sliding_window if use_flash_attention and FusedSDPA is not None: attn_weights = None if q_len == 1: # next token attn_output = fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, "None", False, None, "None", ) else: # first token softmax_mode = "fast" if flash_attention_fast_softmax else "None" if flash_attention_causal_mask: attn_output = fused_scaled_dot_product_attention( query_states, key_states, value_states, None, 0.0, True, None, softmax_mode, flash_attention_recompute, valid_sequence_lengths, "left", ) else: attn_output = fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode, flash_attention_recompute, None, "None", ) else: attn_output, attn_weights = gaudi_eager_attention_forward( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=sliding_window, # main diff with Llama attn_softmax_bf16=attn_softmax_bf16, input_shape=input_shape, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) if not reuse_cache and token_idx is not None and cache_idx is not None and q_len == 1: # Return only past key value shapes and not the tensors during decode phase (q len is 1) # to avoid making past key values as persistent output tensors of HPU graphs. past_key_value = (past_key_value[0].shape, past_key_value[1].shape) return attn_output, attn_weights, past_key_value def attention_all_reduce(self, attn_output): if hasattr(self.o_proj, "all_reduce"): self.o_proj.all_reduce(attn_output) def post_attn_forward(self, attn_output): if hasattr(self.o_proj, "post_all_reduce"): return self.o_proj.post_all_reduce(attn_output) return attn_output class GaudiQwen2DecoderLayer(Qwen2DecoderLayer): def __init__(self, config: Qwen2Config, layer_idx: int): super(Qwen2DecoderLayer, self).__init__() self.hidden_size = config.hidden_size self.self_attn = GaudiQwen2Attention(config, layer_idx) self.mlp = GaudiQwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.self_attn.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.self_attn.update_sincos_cache(seq_len) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states, self_attn_weights, present_key_value = self.pre_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, **kwargs, ) self.self_attn.attention_all_reduce(hidden_states) hidden_states, residual = self.post_attn_pre_mlp(hidden_states, residual) self.mlp.mlp_all_reduce(hidden_states) hidden_states = self.post_mlp(hidden_states, residual) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs def pre_attn( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, present_key_value = self.self_attn.pre_attn_forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, **kwargs, ) return hidden_states, attn_weights, present_key_value def post_attn_pre_mlp(self, hidden_states, residual): hidden_states = self.self_attn.post_attn_forward(hidden_states) if self.training: hidden_states = hidden_states + residual residual = hidden_states else: residual.add_(hidden_states) hidden_states = residual hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp.pre_mlp_forward(hidden_states) return hidden_states, residual def post_mlp(self, hidden_states, residual): hidden_states = self.mlp.post_mlp_forward(hidden_states) if self.training: hidden_states = hidden_states + residual else: residual.add_(hidden_states) hidden_states = residual return hidden_states class GaudiQwen2Model(Qwen2Model): def __init__(self, config: Qwen2Config): """ Copied from https://github.com/huggingface/transformers/blob/v4.40-release/src/transformers/models/qwen2/modeling_qwen2.py#L920 1. set fill_value to 1 instead of True 2. add device=self.device """ super(Qwen2Model, self).__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = torch.nn.ModuleList( [GaudiQwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): for layer in self.layers: layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers) def update_sincos_cache(self, seq_len): for layer in self.layers: layer.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: torch.Tensor = None, cache_idx: int = None, lazy_mode: Optional[bool] = True, num_virtual_tokens: int = None, **kwargs, ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You must specify exactly one of input_ids or inputs_embeds") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) ignore_cache_position = True # Ignoring cache position for HPU use_new_cache = False # Ignoring new Cache path for HPU past_seen_tokens = 0 if past_key_values is not None and use_cache: # kept for BC (cache positions) if reuse_cache: if isinstance(past_key_values[0][0], torch.Tensor): past_seen_tokens = past_key_values[0][0].shape[2] else: past_seen_tokens = past_key_values[0][0][2] else: if use_new_cache: if not isinstance(past_key_values, StaticCache): past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_seq_length() else: past_seen_tokens = past_key_values[0][0].shape[2] if ignore_cache_position is False: if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None and cache_position: position_ids = cache_position.unsqueeze(0) else: if position_ids is None: position_ids = torch.arange( past_seen_tokens, seq_length + past_seen_tokens, dtype=torch.long, device=inputs_embeds.device ) position_ids = position_ids.unsqueeze(0) cache_position = None # HPU specific mask generation if ignore_cache_position: causal_mask = _gaudi_prepare_4d_causal_attention_mask( attention_mask, input_ids.shape if input_ids is not None else (batch_size, seq_length), inputs_embeds, past_seen_tokens, ) else: causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if not use_new_cache else None if lazy_mode: htcore.mark_step() for layer_idx, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]): if ( lazy_mode and not self.training and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1) ): htcore.mark_step() if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **kwargs), hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, None, None, attn_softmax_bf16, False, use_flash_attention, flash_attention_recompute, flash_attention_causal_mask, flash_attention_fast_softmax, valid_sequence_lengths, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=None if past_key_values is None else past_key_values[layer_idx], output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class GaudiQwen2ForCausalLM(Qwen2ForCausalLM): def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.model.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.model.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, token_idx: Optional[torch.Tensor] = None, trim_logits: Optional[bool] = False, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: torch.Tensor = None, cache_idx: int = None, lazy_mode: Optional[bool] = True, num_virtual_tokens: int = None, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if self.generation_config.use_fused_rope is False: global has_fused_rope has_fused_rope = False # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, lazy_mode=lazy_mode, num_virtual_tokens=num_virtual_tokens, ) hidden_states = outputs.last_hidden_state _, seq_len, _ = hidden_states.shape if seq_len > 1 and trim_logits and not self.training: if token_idx is not None: hidden_states = hidden_states.index_select(1, token_idx - 1) else: hidden_states = hidden_states[:, -1, :] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]).float() loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @staticmethod def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ return tuple( ( layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)), layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)), ) for layer_past in past ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, num_logits_to_keep=None, token_idx=None, **kwargs, ): reuse_cache = kwargs.get("reuse_cache") bucket_internal = kwargs.get("bucket_internal") if past_key_values is not None: if token_idx is not None: idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1 input_ids = torch.index_select(input_ids, 1, idx) else: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif ( input_ids.shape[1] != cache_position.shape[0] ): # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] elif (reuse_cache or bucket_internal) and token_idx is not None: # KV cache is pre allocated with reuse cache or will be padded with bucket internal # hence for the 1st token we can slice the inputs till token idx for the fwd pass. input_ids = input_ids[:, :token_idx] attention_mask = attention_mask[:, :token_idx] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: if token_idx is not None: position_ids = torch.index_select(position_ids, 1, token_idx - 1) else: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) cache_position = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = { "input_ids": input_ids.clone(memory_format=torch.contiguous_format) } # `contiguous()` needed for compilation use cases if num_logits_to_keep is not None: model_inputs["num_logits_to_keep"] = num_logits_to_keep model_inputs.update( { "position_ids": position_ids.contiguous(), "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "token_idx": token_idx, "trim_logits": kwargs.get("trim_logits"), "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"), "reuse_cache": reuse_cache, "use_flash_attention": kwargs.get("use_flash_attention"), "flash_attention_recompute": kwargs.get("flash_attention_recompute"), "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"), "flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"), "valid_sequence_lengths": kwargs.get("valid_sequence_lengths"), "cache_idx": kwargs.get("cache_idx"), "lazy_mode": kwargs.get("lazy_mode"), "num_virtual_tokens": kwargs.get("num_virtual_tokens"), } ) return model_inputs def apply_customized_rope(q, k, cos, sin, position_ids, training=True): if q.device.type == "hpu" and has_fused_rope: return apply_customized_rope_module(q, k, cos, sin, position_ids, training) else: # keep the same implementation as Transformers v4.37.2 return apply_rotary_pos_emb(q, k, cos[position_ids], sin[position_ids])