optimum/habana/transformers/models/qwen2/modeling_qwen2.py (931 lines of code) (raw):
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Copyright (C) 2022-2024 Habana Labs, Ltd. an Intel Company
###############################################################################
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.models.qwen2.modeling_qwen2 import (
KwargsForCausalLM,
Qwen2Attention,
Qwen2DecoderLayer,
Qwen2ForCausalLM,
Qwen2MLP,
Qwen2Model,
Qwen2RMSNorm,
apply_rotary_pos_emb,
logger,
)
from transformers.processing_utils import Unpack
from ....distributed import parallel_state
from ...modeling_attn_mask_utils import (
_gaudi_prepare_4d_causal_attention_mask,
)
from ...modeling_rope_utils import GaudiRotaryEmbedding
from ..modeling_all_models import KVCache, Matmul, apply_customized_rope_module
try:
from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE # noqa
has_fused_rope = True
except ImportError:
has_fused_rope = False
print("Not using HPU fused kernel for apply_rotary_pos_emb")
try:
from habana_frameworks.torch.hpex.normalization import FusedRMSNorm as FusedRMSNorm
has_fused_rms_norm = True
except ImportError:
has_fused_rms_norm = False
print("Not using HPU fused kernel for RMSNorm")
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
import habana_frameworks.torch.core as htcore
def gaudi_qwen2_rmsnorm_forward(self, hidden_states):
if hidden_states.device.type == "hpu" and has_fused_rms_norm:
# mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype
if hidden_states.dtype != self.weight.dtype:
orig_dtype = hidden_states.dtype
hidden_states = FusedRMSNorm.apply(hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon)
return hidden_states.to(orig_dtype)
else:
hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon)
return hidden_states
else:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class GaudiQwen2MLP(Qwen2MLP):
def pre_mlp_forward(self, x):
inputs = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
output = self.down_proj(inputs)
return output
def mlp_all_reduce(self, x):
if hasattr(self.down_proj, "all_reduce"):
self.down_proj.all_reduce(x)
def post_mlp_forward(self, x):
if hasattr(self.down_proj, "post_all_reduce"):
return self.down_proj.post_all_reduce(x)
return x
def gaudi_qwen2_repeat_kv(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: torch.Tensor,
n_rep: int,
):
batch, num_key_value_heads, kv_len, head_dim = key_states.shape
if n_rep == 1 or num_key_value_heads == 1:
return query_states, key_states, value_states, attention_mask
new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim)
key_states = key_states.reshape(new_kv_shape)
value_states = value_states.reshape(new_kv_shape)
batch, _, q_len, head_dim = query_states.shape
new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim)
query_states = query_states.reshape(new_q_shape)
if attention_mask is not None:
# Add groups dim and set to 1
attention_mask = attention_mask.unsqueeze(1)
return query_states, key_states, value_states, attention_mask
# FusedScaledDotProductAttention
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
self.scale = scale
self.attention_dropout = attention_dropout
self.enable_recompute = enable_recompute
self.flash_attention_fp8 = flash_attention_fp8
def forward(
self,
query,
key,
value,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side="left",
):
return self._hpu_kernel_fsdpa.apply(
query,
key,
value,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side,
)
def gaudi_eager_attention_forward(
module: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
attn_softmax_bf16: bool = False,
**kwargs,
):
bsz, q_len = kwargs["input_shape"]
query_states, key_states, value_states, attention_mask = gaudi_qwen2_repeat_kv(
query, key, value, attention_mask, module.num_key_value_groups
)
query_states = query_states * scaling
attn_weights = module.matmul_qk(query_states, key_states.transpose(-2, -1)).float()
htcore.mark_step()
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
if attn_softmax_bf16:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype)
else:
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = module.matmul_av(attn_weights, value_states)
attn_output = attn_output.reshape(bsz, -1, q_len, module.head_dim)
return attn_output, attn_weights
class GaudiDistributedAttention(torch.nn.Module):
def __init__(
self, hpu_module_fsdpa: ModuleFusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8
):
super().__init__()
self._hpu_module_fsdpa = hpu_module_fsdpa
if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1:
from deepspeed.sequence.layer import DistributedAttention
self._hpu_module_fsdpa_distributed = DistributedAttention(
self._hpu_module_fsdpa, parallel_state.get_sequence_parallel_group(), 1, 2
)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor,
dropout_p: float,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side="left",
):
if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1:
return self._hpu_module_fsdpa_distributed(
query,
key,
value,
0, # As the shape for inputs is [B, N, S, H]
None,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side,
)
else:
return self._hpu_module_fsdpa(
query,
key,
value,
attn_mask,
dropout_p,
is_casual,
scale,
softmax_mode,
recompute_mode,
valid_sequence_lengths,
padding_side,
)
def get_gaudi_distributed_attention(
fused_scaled_dot_product_attention, fused_scaled_dot_product_attention_distributed
):
if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1:
return fused_scaled_dot_product_attention_distributed
else:
return fused_scaled_dot_product_attention
class GaudiQwen2Attention(Qwen2Attention):
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.matmul_qk = Matmul()
self.matmul_av = Matmul()
self.k_cache = KVCache()
self.v_cache = KVCache()
self.inp_seq_len = -1
self.rotary_emb = GaudiRotaryEmbedding(config=self.config)
self.fused_scaled_dot_product_attention = (
ModuleFusedSDPA(
FusedSDPA,
scale=self.scaling,
attention_dropout=self.attention_dropout,
enable_recompute=False,
flash_attention_fp8=getattr(config, "flash_attention_fp8", False),
)
if FusedSDPA
else None
)
# for all2all comm, Distributed Attention cares about sequence (s) and number of heads (h) dimensions. In HPU, they are at 1 and 2 indices
self.fused_scaled_dot_product_attention_distributed = None
if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_world_size() > 1:
self.fused_scaled_dot_product_attention_distributed = (
GaudiDistributedAttention(
self.fused_scaled_dot_product_attention,
scale=self.scaling,
attention_dropout=self.attention_dropout,
enable_recompute=False,
flash_attention_fp8=getattr(config, "flash_attention_fp8", False),
)
if FusedSDPA
else None
)
self.num_key_value_heads = config.num_key_value_heads
def get_k_proj_weight(self):
"""4bit quantization in GPTQ replaces the k_proj.weight with qweight."""
if hasattr(self.k_proj, "qweight"):
return self.k_proj.qweight
return self.k_proj.weight
def get_k_proj_weight_dtype(self):
"""4bit quantization in GPTQ replaces the k_proj.weight with qweight.
Scales tensor gets the weight dtype."""
if hasattr(self.k_proj, "qweight"):
return self.k_proj.scales.dtype
return self.k_proj.weight.dtype
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
cache_shape = (batch_size, self.num_key_value_heads, max_seq_len, self.head_dim)
device = self.get_k_proj_weight().device
dtype = self.config.torch_dtype
self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape)
self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape)
def update_sincos_cache(self, seq_len):
# Call rotary emb forward() to update cos/sin cache when infering more than self.max_position_embeddings
# This helps in avoiding creation of these caches during actual model forward pass and
# reduce memory consumption and improve performance.
if seq_len > self.max_position_embeddings:
self.max_position_embeddings = seq_len
_, _ = self.rotary_emb(self.get_k_proj_weight(), seq_len=seq_len)
def reorder(self, tensor, beam_idx, dim_a, dim_b):
updated = tensor.index_select(0, beam_idx)
tensor.copy_(updated)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
if self.k_cache.cache is None:
return (None, None)
head_dim = self.k_cache.cache.size(-1)
seq_length = self.k_cache.cache.size(-2)
self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim)
self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim)
return (self.k_cache.cache.shape, self.v_cache.cache.shape)
def pre_attn_forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: Optional[torch.Tensor] = None,
cache_idx: int = None,
num_virtual_tokens: int = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
The only differences are:
- add new args token_idx
- optimize KV cache
- add new args attn_softmax_bf16
- add new args reuse_cache
- add new args use_flash_attention
- add new arg flash_attention_recompute
- add new arg flash_attention_causal_mask
- add new arg flash_attention_fast_softmax
- add new arg num_virtual_tokens
"""
input_shape = hidden_states.shape[:-1]
q_len = input_shape[1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if token_idx is None:
if hasattr(past_key_value, "get_usable_length"):
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
else:
kv_seq_len += past_key_value[0].shape[-2]
else:
if reuse_cache and not isinstance(past_key_value[0], torch.Tensor):
kv_seq_len = past_key_value[0][-2]
else:
if num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2]:
kv_seq_len = past_key_value[0].shape[-2] + kv_seq_len
else:
kv_seq_len = past_key_value[0].shape[-2]
seq_len = kv_seq_len
if parallel_state.sequence_parallel_is_initialized():
seq_len = kv_seq_len * parallel_state.get_sequence_parallel_world_size()
cos, sin = self.rotary_emb(value_states, seq_len=seq_len)
# If sequence parallel in enabled, position_ids should be based on which part of the sequence is present in the rank
# As we divide the inputs based on ranks, position_ids are generated to suit that part of the sequence
if parallel_state.sequence_parallel_is_initialized() and parallel_state.get_sequence_parallel_rank() > 0:
position_ids = torch.arange(
kv_seq_len * parallel_state.get_sequence_parallel_rank(),
kv_seq_len * (parallel_state.get_sequence_parallel_rank() + 1),
dtype=torch.long,
device=query_states.device,
)
position_ids = position_ids.unsqueeze(0)
query_states, key_states = apply_customized_rope(
query_states, key_states, cos, sin, kwargs["position_ids"], self.training
)
if use_cache:
# reuse k, v, self_attention
if reuse_cache:
if past_key_value is not None and isinstance(past_key_value[0], torch.Tensor):
# prefix tuning case. attach past_key_value to generate first token.
key_states = torch.cat((past_key_value[0], key_states), -2)
value_states = torch.cat((past_key_value[1], value_states), -2)
key_states = self.k_cache(key_states, 2, token_idx)
value_states = self.v_cache(value_states, 2, token_idx)
past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape())
else:
if past_key_value is None:
past_key = torch.zeros(
key_states.shape, dtype=self.get_k_proj_weight_dtype(), device=key_states.device
)
past_value = torch.zeros(
key_states.shape, dtype=self.get_k_proj_weight_dtype(), device=key_states.device
)
# Return list instead of tuple
past_key_value = [past_key, past_value]
if (
token_idx is not None
and num_virtual_tokens is not None
and num_virtual_tokens == past_key_value[0].shape[-2]
):
# prefix tuning case. attach past_key_value to generate first token.
key_states = torch.cat((past_key_value[0], key_states), -2)
value_states = torch.cat((past_key_value[1], value_states), -2)
past_key_value = (key_states, value_states)
else:
key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len)
value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len)
if token_idx is None:
past_key_value = (key_states, value_states)
if cache_idx is not None and q_len == 1:
key_states = key_states[:, :, :cache_idx, :]
value_states = value_states[:, :, :cache_idx, :]
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :cache_idx]
kv_seq_len = key_states.shape[-2]
else:
past_key_value = None
fused_scaled_dot_product_attention = get_gaudi_distributed_attention(
self.fused_scaled_dot_product_attention, self.fused_scaled_dot_product_attention_distributed
)
sliding_window = None
if (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
sliding_window = self.config.sliding_window
if use_flash_attention and FusedSDPA is not None:
attn_weights = None
if q_len == 1:
# next token
attn_output = fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
0.0,
False,
None,
"None",
False,
None,
"None",
)
else:
# first token
softmax_mode = "fast" if flash_attention_fast_softmax else "None"
if flash_attention_causal_mask:
attn_output = fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
None,
0.0,
True,
None,
softmax_mode,
flash_attention_recompute,
valid_sequence_lengths,
"left",
)
else:
attn_output = fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
0.0,
False,
None,
softmax_mode,
flash_attention_recompute,
None,
"None",
)
else:
attn_output, attn_weights = gaudi_eager_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=sliding_window, # main diff with Llama
attn_softmax_bf16=attn_softmax_bf16,
input_shape=input_shape,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not reuse_cache and token_idx is not None and cache_idx is not None and q_len == 1:
# Return only past key value shapes and not the tensors during decode phase (q len is 1)
# to avoid making past key values as persistent output tensors of HPU graphs.
past_key_value = (past_key_value[0].shape, past_key_value[1].shape)
return attn_output, attn_weights, past_key_value
def attention_all_reduce(self, attn_output):
if hasattr(self.o_proj, "all_reduce"):
self.o_proj.all_reduce(attn_output)
def post_attn_forward(self, attn_output):
if hasattr(self.o_proj, "post_all_reduce"):
return self.o_proj.post_all_reduce(attn_output)
return attn_output
class GaudiQwen2DecoderLayer(Qwen2DecoderLayer):
def __init__(self, config: Qwen2Config, layer_idx: int):
super(Qwen2DecoderLayer, self).__init__()
self.hidden_size = config.hidden_size
self.self_attn = GaudiQwen2Attention(config, layer_idx)
self.mlp = GaudiQwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return self.self_attn.reorder_kv_cache(beam_idx)
def update_sincos_cache(self, seq_len):
self.self_attn.update_sincos_cache(seq_len)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
token_idx: Optional[torch.Tensor] = None,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: Optional[torch.Tensor] = None,
cache_idx: int = None,
num_virtual_tokens: int = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states, self_attn_weights, present_key_value = self.pre_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
token_idx=token_idx,
attn_softmax_bf16=attn_softmax_bf16,
reuse_cache=reuse_cache,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
flash_attention_causal_mask=flash_attention_causal_mask,
flash_attention_fast_softmax=flash_attention_fast_softmax,
valid_sequence_lengths=valid_sequence_lengths,
cache_idx=cache_idx,
num_virtual_tokens=num_virtual_tokens,
**kwargs,
)
self.self_attn.attention_all_reduce(hidden_states)
hidden_states, residual = self.post_attn_pre_mlp(hidden_states, residual)
self.mlp.mlp_all_reduce(hidden_states)
hidden_states = self.post_mlp(hidden_states, residual)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
def pre_attn(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
token_idx: Optional[torch.Tensor] = None,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: Optional[torch.Tensor] = None,
cache_idx: int = None,
num_virtual_tokens: int = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights, present_key_value = self.self_attn.pre_attn_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
token_idx=token_idx,
attn_softmax_bf16=attn_softmax_bf16,
reuse_cache=reuse_cache,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
flash_attention_causal_mask=flash_attention_causal_mask,
flash_attention_fast_softmax=flash_attention_fast_softmax,
valid_sequence_lengths=valid_sequence_lengths,
cache_idx=cache_idx,
num_virtual_tokens=num_virtual_tokens,
**kwargs,
)
return hidden_states, attn_weights, present_key_value
def post_attn_pre_mlp(self, hidden_states, residual):
hidden_states = self.self_attn.post_attn_forward(hidden_states)
if self.training:
hidden_states = hidden_states + residual
residual = hidden_states
else:
residual.add_(hidden_states)
hidden_states = residual
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp.pre_mlp_forward(hidden_states)
return hidden_states, residual
def post_mlp(self, hidden_states, residual):
hidden_states = self.mlp.post_mlp_forward(hidden_states)
if self.training:
hidden_states = hidden_states + residual
else:
residual.add_(hidden_states)
hidden_states = residual
return hidden_states
class GaudiQwen2Model(Qwen2Model):
def __init__(self, config: Qwen2Config):
"""
Copied from https://github.com/huggingface/transformers/blob/v4.40-release/src/transformers/models/qwen2/modeling_qwen2.py#L920
1. set fill_value to 1 instead of True
2. add device=self.device
"""
super(Qwen2Model, self).__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = torch.nn.ModuleList(
[GaudiQwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
for layer in self.layers:
layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers)
def update_sincos_cache(self, seq_len):
for layer in self.layers:
layer.update_sincos_cache(seq_len)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
token_idx: Optional[torch.Tensor] = None,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: torch.Tensor = None,
cache_idx: int = None,
lazy_mode: Optional[bool] = True,
num_virtual_tokens: int = None,
**kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
ignore_cache_position = True # Ignoring cache position for HPU
use_new_cache = False # Ignoring new Cache path for HPU
past_seen_tokens = 0
if past_key_values is not None and use_cache: # kept for BC (cache positions)
if reuse_cache:
if isinstance(past_key_values[0][0], torch.Tensor):
past_seen_tokens = past_key_values[0][0].shape[2]
else:
past_seen_tokens = past_key_values[0][0][2]
else:
if use_new_cache:
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
else:
past_seen_tokens = past_key_values[0][0].shape[2]
if ignore_cache_position is False:
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None and cache_position:
position_ids = cache_position.unsqueeze(0)
else:
if position_ids is None:
position_ids = torch.arange(
past_seen_tokens, seq_length + past_seen_tokens, dtype=torch.long, device=inputs_embeds.device
)
position_ids = position_ids.unsqueeze(0)
cache_position = None
# HPU specific mask generation
if ignore_cache_position:
causal_mask = _gaudi_prepare_4d_causal_attention_mask(
attention_mask,
input_ids.shape if input_ids is not None else (batch_size, seq_length),
inputs_embeds,
past_seen_tokens,
)
else:
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if not use_new_cache else None
if lazy_mode:
htcore.mark_step()
for layer_idx, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
if (
lazy_mode
and not self.training
and (torch.distributed.is_initialized() is False or torch.distributed.get_world_size() == 1)
):
htcore.mark_step()
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
None,
None,
attn_softmax_bf16,
False,
use_flash_attention,
flash_attention_recompute,
flash_attention_causal_mask,
flash_attention_fast_softmax,
valid_sequence_lengths,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=None if past_key_values is None else past_key_values[layer_idx],
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
token_idx=token_idx,
attn_softmax_bf16=attn_softmax_bf16,
reuse_cache=reuse_cache,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
flash_attention_causal_mask=flash_attention_causal_mask,
flash_attention_fast_softmax=flash_attention_fast_softmax,
valid_sequence_lengths=valid_sequence_lengths,
cache_idx=cache_idx,
num_virtual_tokens=num_virtual_tokens,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class GaudiQwen2ForCausalLM(Qwen2ForCausalLM):
def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len):
self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len)
def reorder_kv_cache(self, beam_idx: torch.LongTensor):
return self.model.reorder_kv_cache(beam_idx)
def update_sincos_cache(self, seq_len):
self.model.update_sincos_cache(seq_len)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
token_idx: Optional[torch.Tensor] = None,
trim_logits: Optional[bool] = False,
attn_softmax_bf16: Optional[bool] = False,
reuse_cache: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_causal_mask: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
valid_sequence_lengths: torch.Tensor = None,
cache_idx: int = None,
lazy_mode: Optional[bool] = True,
num_virtual_tokens: int = None,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.generation_config.use_fused_rope is False:
global has_fused_rope
has_fused_rope = False
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
token_idx=token_idx,
attn_softmax_bf16=attn_softmax_bf16,
reuse_cache=reuse_cache,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
flash_attention_causal_mask=flash_attention_causal_mask,
flash_attention_fast_softmax=flash_attention_fast_softmax,
valid_sequence_lengths=valid_sequence_lengths,
cache_idx=cache_idx,
lazy_mode=lazy_mode,
num_virtual_tokens=num_virtual_tokens,
)
hidden_states = outputs.last_hidden_state
_, seq_len, _ = hidden_states.shape
if seq_len > 1 and trim_logits and not self.training:
if token_idx is not None:
hidden_states = hidden_states.index_select(1, token_idx - 1)
else:
hidden_states = hidden_states[:, -1, :]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :]).float()
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@staticmethod
def _reorder_cache(
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
return tuple(
(
layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
)
for layer_past in past
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
token_idx=None,
**kwargs,
):
reuse_cache = kwargs.get("reuse_cache")
bucket_internal = kwargs.get("bucket_internal")
if past_key_values is not None:
if token_idx is not None:
idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1
input_ids = torch.index_select(input_ids, 1, idx)
else:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif (
input_ids.shape[1] != cache_position.shape[0]
): # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
elif (reuse_cache or bucket_internal) and token_idx is not None:
# KV cache is pre allocated with reuse cache or will be padded with bucket internal
# hence for the 1st token we can slice the inputs till token idx for the fwd pass.
input_ids = input_ids[:, :token_idx]
attention_mask = attention_mask[:, :token_idx]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
if token_idx is not None:
position_ids = torch.index_select(position_ids, 1, token_idx - 1)
else:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
cache_position = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {
"input_ids": input_ids.clone(memory_format=torch.contiguous_format)
} # `contiguous()` needed for compilation use cases
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids.contiguous(),
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"token_idx": token_idx,
"trim_logits": kwargs.get("trim_logits"),
"attn_softmax_bf16": kwargs.get("attn_softmax_bf16"),
"reuse_cache": reuse_cache,
"use_flash_attention": kwargs.get("use_flash_attention"),
"flash_attention_recompute": kwargs.get("flash_attention_recompute"),
"flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"),
"flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"),
"valid_sequence_lengths": kwargs.get("valid_sequence_lengths"),
"cache_idx": kwargs.get("cache_idx"),
"lazy_mode": kwargs.get("lazy_mode"),
"num_virtual_tokens": kwargs.get("num_virtual_tokens"),
}
)
return model_inputs
def apply_customized_rope(q, k, cos, sin, position_ids, training=True):
if q.device.type == "hpu" and has_fused_rope:
return apply_customized_rope_module(q, k, cos, sin, position_ids, training)
else:
# keep the same implementation as Transformers v4.37.2
return apply_rotary_pos_emb(q, k, cos[position_ids], sin[position_ids])