optimum/habana/transformers/models/qwen2_moe/modeling_qwen2_moe.py (950 lines of code) (raw):

# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Qwen2MoE model.""" import math import warnings from typing import List, Optional, Tuple, Union import habana_frameworks.torch.core as htcore import torch import torch.nn.functional as F from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.integrations.deepspeed import is_deepspeed_available from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast from transformers.models.qwen2_moe.configuration_qwen2_moe import Qwen2MoeConfig from transformers.models.qwen2_moe.modeling_qwen2_moe import ( Qwen2MoeAttention, Qwen2MoeDecoderLayer, Qwen2MoeForCausalLM, Qwen2MoeMLP, Qwen2MoeModel, Qwen2MoeRMSNorm, Qwen2MoeSparseMoeBlock, apply_rotary_pos_emb, load_balancing_loss_func, ) from transformers.utils import logging from ...modeling_attn_mask_utils import ( _gaudi_prepare_4d_causal_attention_mask, ) from ...modeling_rope_utils import GaudiRotaryEmbedding try: from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV2 as FusedRoPE has_fused_rope = True except ImportError: has_fused_rope = False print("Not using HPU fused kernel for apply_rotary_pos_emb") try: from habana_frameworks.torch.hpex.normalization import FusedRMSNorm as FusedRMSNorm has_fused_rms_norm = True except ImportError: has_fused_rms_norm = False print("Not using HPU fused kernel for RMSNorm") try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None logger = logging.get_logger(__name__) def apply_customized_rope(q, k, cos, sin, position_ids): if q.device.type == "hpu" and has_fused_rope: # TODO: remove `.clone()` when it is fixed in SynapseAI if k.dtype == torch.bfloat16: return FusedRoPE.apply( q, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ), FusedRoPE.apply( k, cos.unsqueeze(0).unsqueeze(0).clone().to(torch.bfloat16), sin.unsqueeze(0).unsqueeze(0).clone().to(torch.bfloat16), position_ids, ) return FusedRoPE.apply( q, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ), FusedRoPE.apply( k, cos.unsqueeze(0).unsqueeze(0).clone(), sin.unsqueeze(0).unsqueeze(0).clone(), position_ids ) else: # keep the same implementation as Transformers v4.37.2 return apply_rotary_pos_emb(q, k, cos[position_ids], sin[position_ids]) def gaudi_qwen2moe_rmsnorm_forward(self, hidden_states): """ Copied from MixtralRMSNorm.forward: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py The only differences are: - override RMSNorm with Habana fused RMSNorm """ if hidden_states.device.type == "hpu" and has_fused_rms_norm: # mixed dtypes are not good for FusedRMSNorm, both inputs need to have same dtype if hidden_states.dtype != self.weight.dtype: orig_dtype = hidden_states.dtype hidden_states = FusedRMSNorm.apply(hidden_states.to(self.weight.dtype), self.weight, self.variance_epsilon) return hidden_states.to(orig_dtype) else: hidden_states = FusedRMSNorm.apply(hidden_states, self.weight, self.variance_epsilon) return hidden_states else: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class GaudiQwen2MoeMLP(Qwen2MoeMLP): def pre_mlp_forward(self, x): input = self.act_fn(self.gate_proj(x)) * self.up_proj(x) output = self.down_proj(input) return output def mlp_all_reduce(self, x): if hasattr(self.down_proj, "all_reduce"): self.down_proj.all_reduce(x) def post_mlp_forward(self, x): if hasattr(self.down_proj, "post_all_reduce"): return self.down_proj.post_all_reduce(x) return x def gaudi_qwen2moe_repeat_kv( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, n_rep: int, ): """ Copied from repeat_kv: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py The only differences are: - Append num_key_value_heads == 1 check as kv states can be broadcasted during matmuls so need to expand and reshape them. - Add new args query_states, key_states, value_states and attention_mask and update the logic for expansion. The query states go from (batch, num_heads, seqlen, head_dim) to (batch, num_key_value_heads, n_rep, seqlen, head_dim) The key/value states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_key_value_heads, 1, seqlen, head_dim) """ batch, num_key_value_heads, kv_len, head_dim = key_states.shape if n_rep == 1 or num_key_value_heads == 1: return query_states, key_states, value_states, attention_mask new_kv_shape = (batch, num_key_value_heads, 1, kv_len, head_dim) key_states = key_states.reshape(new_kv_shape) value_states = value_states.reshape(new_kv_shape) batch, q_heads, q_len, head_dim = query_states.shape new_q_shape = (batch, num_key_value_heads, n_rep, q_len, head_dim) query_states = query_states.reshape(new_q_shape) if attention_mask is not None: # Add groups dim and set to 1 attention_mask = attention_mask.unsqueeze(1) return query_states, key_states, value_states, attention_mask class Matmul(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return torch.matmul(x, y) class KVCache(torch.nn.Module): def __init__(self): super(KVCache, self).__init__() self.cache = None self.inp_seq_len = -1 def allocate(self, inp_seq_len, dtype, device, shape): if self.cache is None or self.cache.shape != shape: self.inp_seq_len = inp_seq_len self.cache = torch.zeros(shape, dtype=dtype, device=device) else: assert self.inp_seq_len == inp_seq_len, ( f"inp_seq_len must be the same. self.inp_seq_len:{self.inp_seq_len} inp_seq_len:{inp_seq_len}" ) self.cache.fill_(0) @staticmethod def update(prev, cur, dim, idx, inp_seq_len): orig_cur = cur if prev.shape == cur.shape: prev.copy_(cur) return orig_cur if idx is not None and cur.shape[2] > 1 and cur.shape[2] <= prev.shape[2]: # Initialize prev[:, :, :inp_seq_len, :].copy_(cur) return orig_cur if idx is not None: prev.index_copy_(dim, idx - 1, cur) return prev else: return torch.cat((prev, cur), dim=dim) def get_shape(self): if self.cache is None: return None return self.cache.shape def forward(self, cur, dim, idx): return self.update(self.cache, cur, dim, idx, self.inp_seq_len) # FusedScaledDotProductAttention class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA, scale, attention_dropout, enable_recompute, flash_attention_fp8): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA self.scale = scale self.attention_dropout = attention_dropout self.enable_recompute = enable_recompute self.flash_attention_fp8 = flash_attention_fp8 def forward( self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side="left", ): return self._hpu_kernel_fsdpa.apply( query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode, recompute_mode, valid_sequence_lengths, padding_side, ) class GaudiQwen2MoeAttention(Qwen2MoeAttention): def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.matmul_qk = Matmul() self.matmul_av = Matmul() self.k_cache = KVCache() self.v_cache = KVCache() self.inp_seq_len = -1 self.norm_factor = 1.0 / math.sqrt(self.head_dim) self.rotary_emb = GaudiRotaryEmbedding(config=self.config) self.fused_scaled_dot_product_attention = ( ModuleFusedSDPA( FusedSDPA, scale=self.norm_factor, attention_dropout=self.attention_dropout, enable_recompute=False, flash_attention_fp8=getattr(config, "flash_attention_fp8", False), ) if FusedSDPA else None ) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): cache_shape = (batch_size, self.num_key_value_heads, max_seq_len, self.head_dim) device = self.k_proj.weight.device dtype = self.config.torch_dtype self.k_cache.allocate(inp_seq_len, dtype, device, cache_shape) self.v_cache.allocate(inp_seq_len, dtype, device, cache_shape) def update_sincos_cache(self, seq_len): # Call rotary emb forward() to update cos/sin cache when infering more than self.max_position_embeddings # This helps in avoiding creation of these caches during actual model forward pass and # reduce memory consumption and improve performance. if seq_len > self.max_position_embeddings: self.max_position_embeddings = seq_len _, _ = self.rotary_emb(self.k_proj.weight, seq_len=seq_len) def reorder(self, tensor, beam_idx, dim_a, dim_b): updated = tensor.index_select(0, beam_idx) tensor.copy_(updated) def reorder_kv_cache(self, beam_idx: torch.LongTensor): if self.k_cache.cache is None: return (None, None) head_dim = self.k_cache.cache.size(-1) seq_length = self.k_cache.cache.size(-2) self.reorder(self.k_cache.cache, beam_idx, seq_length, head_dim) self.reorder(self.v_cache.cache, beam_idx, seq_length, head_dim) return (self.k_cache.cache.shape, self.v_cache.cache.shape) def pre_attn_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """ Copied from LlamaAttention.forward: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py The only differences are: - add new args token_idx - optimize KV cache - add new args attn_softmax_bf16 - add new args reuse_cache - add new args use_flash_attention - add new arg flash_attention_recompute - add new arg flash_attention_causal_mask - add new arg flash_attention_fast_softmax - add new arg num_virtual_tokens """ bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if token_idx is None: if hasattr(past_key_value, "get_usable_length"): kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value[0].shape[-2] else: if reuse_cache and not isinstance(past_key_value[0], torch.Tensor): kv_seq_len = past_key_value[0][-2] else: if num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2]: kv_seq_len = past_key_value[0].shape[-2] + kv_seq_len else: kv_seq_len = past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_customized_rope(query_states, key_states, cos, sin, position_ids) if use_cache: # reuse k, v, self_attention if reuse_cache: if past_key_value is not None and isinstance(past_key_value[0], torch.Tensor): # prefix tuning case. attach past_key_value to generate first token. key_states = torch.cat((past_key_value[0], key_states), -2) value_states = torch.cat((past_key_value[1], value_states), -2) key_states = self.k_cache(key_states, 2, token_idx) value_states = self.v_cache(value_states, 2, token_idx) past_key_value = (self.k_cache.get_shape(), self.v_cache.get_shape()) else: if past_key_value is None: past_key = torch.zeros(key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device) past_value = torch.zeros( key_states.shape, dtype=self.k_proj.weight.dtype, device=key_states.device ) # Return list instead of tuple past_key_value = [past_key, past_value] if ( token_idx is not None and num_virtual_tokens is not None and num_virtual_tokens == past_key_value[0].shape[-2] ): # prefix tuning case. attach past_key_value to generate first token. key_states = torch.cat((past_key_value[0], key_states), -2) value_states = torch.cat((past_key_value[1], value_states), -2) past_key_value = (key_states, value_states) else: key_states = self.k_cache.update(past_key_value[0], key_states, 2, token_idx, self.inp_seq_len) value_states = self.v_cache.update(past_key_value[1], value_states, 2, token_idx, self.inp_seq_len) if token_idx is None: past_key_value = (key_states, value_states) if cache_idx is not None and q_len == 1: key_states = key_states[:, :, :cache_idx, :] value_states = value_states[:, :, :cache_idx, :] if attention_mask is not None: attention_mask = attention_mask[:, :, :, :cache_idx] kv_seq_len = key_states.shape[-2] else: past_key_value = None if use_flash_attention and FusedSDPA is not None: if q_len == 1: # next token attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, "None", False, None, "None", ) else: # first token softmax_mode = "fast" if flash_attention_fast_softmax else "None" if flash_attention_causal_mask: attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, None, 0.0, True, None, softmax_mode, flash_attention_recompute, valid_sequence_lengths, "left", ) else: attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, 0.0, False, None, softmax_mode, flash_attention_recompute, None, "None", ) else: query_states, key_states, value_states, attention_mask = gaudi_qwen2moe_repeat_kv( query_states, key_states, value_states, attention_mask, self.num_key_value_groups ) query_states = query_states * self.norm_factor attn_weights = self.matmul_qk(query_states, key_states.transpose(-2, -1)).float() htcore.mark_step() if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask if cache_position is not None: causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask.float() if attn_softmax_bf16: attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=query_states.dtype) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( query_states.dtype ) attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = self.matmul_av(attn_weights, value_states) attn_output = attn_output.reshape(bsz, -1, q_len, self.head_dim) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None if not reuse_cache and token_idx is not None and cache_idx is not None and q_len == 1: # Return only past key value shapes and not the tensors during decode phase (q len is 1) # to avoid making past key values as persistent output tensors of HPU graphs. past_key_value = (past_key_value[0].shape, past_key_value[1].shape) return attn_output, attn_weights, past_key_value def attention_all_reduce(self, attn_output): if hasattr(self.o_proj, "all_reduce"): self.o_proj.all_reduce(attn_output) def post_attn_forward(self, attn_output): if hasattr(self.o_proj, "post_all_reduce"): return self.o_proj.post_all_reduce(attn_output) return attn_output def gaudi_qwen2moe_block_sparse_moe_forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ - optimize expert forward, remove dynamic control and dynamic shape """ batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) if self.norm_topk_prob: routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) if self.training: final_hidden_states = torch.zeros( (batch_size, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) padded_weights = torch.zeros( (batch_size * sequence_length, self.num_experts), dtype=hidden_states.dtype, device=hidden_states.device ) padded_weights.scatter_(-1, selected_experts, routing_weights) padded_weights = padded_weights.reshape(-1, sequence_length, self.num_experts) padded_weights = padded_weights.permute(2, 0, 1).unsqueeze(-1) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] padded_weight = padded_weights[expert_idx] current_state_static = hidden_states.reshape(-1, hidden_dim) current_hidden_states_static = ( expert_layer.pre_mlp_forward(current_state_static).reshape(-1, sequence_length, hidden_dim) * padded_weight ) final_hidden_states = final_hidden_states + current_hidden_states_static else: experts_range = range(self.num_experts) w1_list = [self.experts[i].gate_proj.weight.squeeze() for i in experts_range] w2_list = [self.experts[i].down_proj.weight.squeeze() for i in experts_range] w3_list = [self.experts[i].up_proj.weight.squeeze() for i in experts_range] final_hidden_states = torch.ops.hpu.mixture_of_experts( hidden_states=hidden_states, expert_routing_table=selected_experts, router_weights=routing_weights, w1=w1_list, w2=w3_list, # Note that there is a different naming convention of w1, w2, and w3 between optimum habana's mixtral model and dynamic MoE kernel. w3=w2_list, permuted_weights=True, activation="silu", experts_min=0, experts_max=(self.num_experts - 1), ) final_hidden_states = final_hidden_states.reshape(-1, sequence_length, hidden_dim) if is_deepspeed_available(): from deepspeed import comm as dist if dist.is_initialized(): dist.all_reduce(final_hidden_states, op=dist.ReduceOp.SUM) shared_expert_output = self.shared_expert(hidden_states) shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output shared_expert_output = shared_expert_output.reshape(-1, sequence_length, hidden_dim) final_hidden_states = final_hidden_states + shared_expert_output return final_hidden_states, router_logits class GaudiQwen2MoeDecoderLayer(Qwen2MoeDecoderLayer): def __init__(self, config: Qwen2MoeConfig, layer_idx: int): super(Qwen2MoeDecoderLayer, self).__init__() self.hidden_size = config.hidden_size self.self_attn = GaudiQwen2MoeAttention(config=config, layer_idx=layer_idx) if config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0: self.mlp = Qwen2MoeSparseMoeBlock(config) else: self.mlp = GaudiQwen2MoeMLP(config, intermediate_size=config.intermediate_size) self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.self_attn.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.self_attn.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.self_attn.update_sincos_cache(seq_len) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Copied from LlamaDecoderLayer.forward: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py The only differences are: - add new args token_idx - add new args attn_softmax_bf16 - add new args reuse_cache - add new args use_flash_attention - add new arg flash_attention_recompute - add new arg flash_attention_causal_mask - add new arg flash_attention_fast_softmax """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states, self_attn_weights, present_key_value = self.pre_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, **kwargs, ) self.self_attn.attention_all_reduce(hidden_states) hidden_states, residual, router_logits = self.post_attn_pre_mlp(hidden_states, residual) hidden_states = self.post_mlp(hidden_states, residual) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs def pre_attn( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: Optional[torch.Tensor] = None, cache_idx: int = None, num_virtual_tokens: int = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, present_key_value = self.self_attn.pre_attn_forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, **kwargs, ) return hidden_states, attn_weights, present_key_value def post_attn_pre_mlp(self, hidden_states, residual): hidden_states = self.self_attn.post_attn_forward(hidden_states) if self.training: hidden_states = hidden_states + residual residual = hidden_states else: residual.add_(hidden_states) hidden_states = residual hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) if isinstance(hidden_states, tuple): hidden_states, router_logits = hidden_states else: router_logits = None return hidden_states, residual, router_logits def post_mlp(self, hidden_states, residual): if self.training: hidden_states = hidden_states + residual else: residual.add_(hidden_states) hidden_states = residual return hidden_states class GaudiQwen2MoeModel(Qwen2MoeModel): def __init__(self, config: Qwen2MoeConfig): super(Qwen2MoeModel, self).__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = torch.nn.ModuleList( [GaudiQwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): for layer in self.layers: layer.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) def reorder_kv_cache(self, beam_idx: torch.LongTensor): return tuple(layer.reorder_kv_cache(beam_idx) for layer in self.layers) def update_sincos_cache(self, seq_len): for layer in self.layers: layer.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, token_idx: Optional[torch.Tensor] = None, attn_softmax_bf16: Optional[bool] = False, reuse_cache: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: torch.Tensor = None, cache_idx: int = None, lazy_mode: Optional[bool] = True, num_virtual_tokens: int = None, ) -> MoeModelOutputWithPast: """ Copied from LlamaModel.forward: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py The only differences are: - add new args token_idx - add new args attn_softmax_bf16 - add new args reuse_cache - add new args use_flash_attention - add new arg flash_attention_recompute - add new arg flash_attention_causal_mask - add new arg flash_attention_fast_softmax - add new arg lazy_mode """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) ignore_cache_position = True # Ignoring cache position for HPU use_new_cache = False # Ignoring new Cache path for HPU past_seen_tokens = 0 if past_key_values is not None and use_cache: # kept for BC (cache positions) if reuse_cache: if isinstance(past_key_values[0][0], torch.Tensor): past_seen_tokens = past_key_values[0][0].shape[2] else: past_seen_tokens = past_key_values[0][0][2] else: if use_new_cache: if not isinstance(past_key_values, StaticCache): past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_seq_length() else: if past_key_values[0] is not None: ##added for (None, None) past_seen_tokens = past_key_values[0][0].shape[2] if ignore_cache_position is False: if cache_position is None: if isinstance(past_key_values, StaticCache): raise ValueError("cache_position is a required argument when using StaticCache.") cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None and cache_position: position_ids = cache_position.unsqueeze(0) else: if position_ids is None: position_ids = torch.arange( past_seen_tokens, seq_length + past_seen_tokens, dtype=torch.long, device=inputs_embeds.device ) position_ids = position_ids.unsqueeze(0) cache_position = None # HPU specific mask generation if ignore_cache_position: causal_mask = _gaudi_prepare_4d_causal_attention_mask( attention_mask, input_ids.shape if input_ids is not None else (batch_size, seq_length), inputs_embeds, past_seen_tokens, ) else: causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = () if not use_new_cache else None if lazy_mode: htcore.mark_step() for layer_idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, None, attn_softmax_bf16, False, use_flash_attention, flash_attention_recompute, flash_attention_causal_mask, flash_attention_fast_softmax, valid_sequence_lengths, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=None if past_key_values is None else past_key_values[layer_idx], output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, num_virtual_tokens=num_virtual_tokens, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) class GaudiQwen2MoeForCausalLM(Qwen2MoeForCausalLM): """ Inherits from Qwen2MoeForCausalLM: https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/mixtral/modeling_mixtral.py#L1231 The only differences are: - add new args token_idx - add token_idx into model_inputs - from step2 when enable KV cache, slice next_input_ids from input_ids base on the token_idx - from step2 when enable KV cache, slice next_position_ids from position_ids base on the token_idx """ def allocate_kv_cache(self, batch_size, max_seq_len, inp_seq_len): self.model.allocate_kv_cache(batch_size, max_seq_len, inp_seq_len) self.kv_cache_len = max_seq_len def reorder_kv_cache(self, beam_idx: torch.LongTensor): return self.model.reorder_kv_cache(beam_idx) def update_sincos_cache(self, seq_len): self.model.update_sincos_cache(seq_len) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, token_idx: Optional[torch.Tensor] = None, trim_logits: Optional[bool] = False, reuse_cache: Optional[bool] = None, attn_softmax_bf16: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_causal_mask: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, valid_sequence_lengths: torch.Tensor = None, cache_idx: int = None, lazy_mode: Optional[bool] = True, num_virtual_tokens: int = None, **loss_kwargs, ) -> MoeCausalLMOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if self.generation_config.use_fused_rope is False: global has_fused_rope has_fused_rope = False # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, token_idx=token_idx, attn_softmax_bf16=attn_softmax_bf16, reuse_cache=reuse_cache, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, flash_attention_causal_mask=flash_attention_causal_mask, flash_attention_fast_softmax=flash_attention_fast_softmax, valid_sequence_lengths=valid_sequence_lengths, cache_idx=cache_idx, lazy_mode=lazy_mode, num_virtual_tokens=num_virtual_tokens, ) hidden_states = outputs.last_hidden_state _, seq_len, _ = hidden_states.shape if seq_len > 1 and trim_logits and not self.training: if token_idx is not None: hidden_states = hidden_states.index_select(1, token_idx - 1) else: hidden_states = hidden_states[:, -1, :] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits, self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) @staticmethod def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ return tuple( ( layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)), layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)), ) for layer_past in past ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, num_logits_to_keep=None, token_idx=None, **kwargs, ): reuse_cache = kwargs.get("reuse_cache") bucket_internal = kwargs.get("bucket_internal") if past_key_values is not None: if token_idx is not None: idx = token_idx + kwargs.get("inputs_embeds_offset", 0) - 1 input_ids = torch.index_select(input_ids, 1, idx) else: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif ( input_ids.shape[1] != cache_position.shape[0] ): # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] elif (reuse_cache or bucket_internal) and token_idx is not None: # KV cache is pre allocated with reuse cache or will be padded with bucket internal # hence for the 1st token we can slice the inputs till token idx for the fwd pass. input_ids = input_ids[:, :token_idx] attention_mask = attention_mask[:, :token_idx] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: if token_idx is not None: position_ids = torch.index_select(position_ids, 1, token_idx - 1) else: position_ids = position_ids[:, -input_ids.shape[1] :] # keep cache_position implementation as None for HPU cache_position = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} if num_logits_to_keep is not None: model_inputs["num_logits_to_keep"] = num_logits_to_keep model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "token_idx": token_idx, "trim_logits": kwargs.get("trim_logits"), "attn_softmax_bf16": kwargs.get("attn_softmax_bf16"), "reuse_cache": reuse_cache, "use_flash_attention": kwargs.get("use_flash_attention"), "flash_attention_recompute": kwargs.get("flash_attention_recompute"), "flash_attention_causal_mask": kwargs.get("flash_attention_causal_mask"), "flash_attention_fast_softmax": kwargs.get("flash_attention_fast_softmax"), "valid_sequence_lengths": kwargs.get("valid_sequence_lengths"), "cache_idx": kwargs.get("cache_idx"), "lazy_mode": kwargs.get("lazy_mode"), "num_virtual_tokens": kwargs.get("num_virtual_tokens"), } ) return model_inputs