optimum/habana/transformers/models/siglip/modeling_siglip.py (246 lines of code) (raw):
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.models.siglip.configuration_siglip import SiglipConfig
from transformers.models.siglip.modeling_siglip import (
SiglipAttention,
SiglipEncoder,
SiglipEncoderLayer,
SiglipMLP,
SiglipVisionEmbeddings,
SiglipVisionModel,
SiglipVisionTransformer,
)
from ..modeling_all_models import Matmul
try:
from habana_frameworks.torch.hpex.kernels import FusedSDPA
except ImportError:
print("Not using HPU fused scaled dot-product attention kernel.")
FusedSDPA = None
class GaudiSiglipVisionEmbeddings(SiglipVisionEmbeddings):
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
_, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
# if HQT quantization enabled, remove the explicit cast to float8 to avoid HQT casting error
if "float8" in str(target_dtype) and pixel_values.device.type == "hpu":
target_dtype = torch.bfloat16
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class ModuleFusedSDPA(torch.nn.Module):
def __init__(self, fusedSDPA):
super().__init__()
self._hpu_kernel_fsdpa = fusedSDPA
def forward(self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode):
return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode)
class Softmax(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, dim=None, invAttnHead=None):
return torch.nn.functional.softmax(x, dim)
class GaudiSiglipAttention(SiglipAttention):
def __init__(self, config):
super().__init__(config=config)
self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None
self.bmm1 = Matmul()
self.bmm2 = Matmul()
self.softmax = Softmax()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
flash_attention_fast_softmax: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Copied from CLIPAttention.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention to enable FusedSDPA
- add new args flash_attention_recompute
- add new args flash_attention_fast_softmax
"""
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
attn_weights = None
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
if FusedSDPA and use_flash_attention:
import habana_frameworks.torch.hpu as ht
softmax_mode = "fast" if flash_attention_fast_softmax else "None"
with ht.sdp_kernel(enable_recompute=flash_attention_recompute):
attn_output = self.fused_scaled_dot_product_attention(
query_states,
key_states,
value_states,
attention_mask,
self.dropout,
False,
1,
softmax_mode,
)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class GaudiSiglipEncoderLayer(SiglipEncoderLayer):
def __init__(self, config: SiglipConfig):
super(SiglipEncoderLayer, self).__init__()
self.embed_dim = config.hidden_size
self.self_attn = GaudiSiglipAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GaudiSiglipEncoder(SiglipEncoder):
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class GaudiSiglipVisionTransformer(SiglipVisionTransformer):
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooler_output = self.head(last_hidden_state) if self.use_head else None
if not return_dict:
return (last_hidden_state, pooler_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GaudiSiglipVisionModel(SiglipVisionModel):
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_flash_attention: Optional[bool] = False,
flash_attention_recompute: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
"""
Copied from CLIPVisionModel.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py
The only differences are:
- add new args use_flash_attention
- add new args flash_attention_recompute
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_flash_attention=use_flash_attention,
flash_attention_recompute=flash_attention_recompute,
)