optimum/habana/transformers/models/siglip/modeling_siglip.py (246 lines of code) (raw):

from typing import Optional, Tuple, Union import torch from torch import nn from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from transformers.models.siglip.configuration_siglip import SiglipConfig from transformers.models.siglip.modeling_siglip import ( SiglipAttention, SiglipEncoder, SiglipEncoderLayer, SiglipMLP, SiglipVisionEmbeddings, SiglipVisionModel, SiglipVisionTransformer, ) from ..modeling_all_models import Matmul try: from habana_frameworks.torch.hpex.kernels import FusedSDPA except ImportError: print("Not using HPU fused scaled dot-product attention kernel.") FusedSDPA = None class GaudiSiglipVisionEmbeddings(SiglipVisionEmbeddings): def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: _, _, height, width = pixel_values.shape target_dtype = self.patch_embedding.weight.dtype # if HQT quantization enabled, remove the explicit cast to float8 to avoid HQT casting error if "float8" in str(target_dtype) and pixel_values.device.type == "hpu": target_dtype = torch.bfloat16 patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] embeddings = patch_embeds.flatten(2).transpose(1, 2) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class ModuleFusedSDPA(torch.nn.Module): def __init__(self, fusedSDPA): super().__init__() self._hpu_kernel_fsdpa = fusedSDPA def forward(self, query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode): return self._hpu_kernel_fsdpa.apply(query, key, value, attn_mask, dropout_p, is_casual, scale, softmax_mode) class Softmax(nn.Module): def __init__(self): super().__init__() def forward(self, x, dim=None, invAttnHead=None): return torch.nn.functional.softmax(x, dim) class GaudiSiglipAttention(SiglipAttention): def __init__(self, config): super().__init__(config=config) self.fused_scaled_dot_product_attention = ModuleFusedSDPA(FusedSDPA) if FusedSDPA else None self.bmm1 = Matmul() self.bmm2 = Matmul() self.softmax = Softmax() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, flash_attention_fast_softmax: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Copied from CLIPAttention.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention to enable FusedSDPA - add new args flash_attention_recompute - add new args flash_attention_fast_softmax """ """Input shape: Batch x Time x Channel""" batch_size, q_len, _ = hidden_states.size() attn_weights = None query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k_v_seq_len = key_states.shape[-2] if FusedSDPA and use_flash_attention: import habana_frameworks.torch.hpu as ht softmax_mode = "fast" if flash_attention_fast_softmax else "None" with ht.sdp_kernel(enable_recompute=flash_attention_recompute): attn_output = self.fused_scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, self.dropout, False, 1, softmax_mode, ) else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): raise ValueError( f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class GaudiSiglipEncoderLayer(SiglipEncoderLayer): def __init__(self, config: SiglipConfig): super(SiglipEncoderLayer, self).__init__() self.embed_dim = config.hidden_size self.self_attn = GaudiSiglipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class GaudiSiglipEncoder(SiglipEncoder): def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class GaudiSiglipVisionTransformer(SiglipVisionTransformer): def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooler_output = self.head(last_hidden_state) if self.use_head else None if not return_dict: return (last_hidden_state, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GaudiSiglipVisionModel(SiglipVisionModel): def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_flash_attention: Optional[bool] = False, flash_attention_recompute: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: """ Copied from CLIPVisionModel.forward: https://github.com/huggingface/transformers/blob/ab0f050b42d903f34d6eb97f3f8c0c07f0517ad2/src/transformers/models/clip/modeling_clip.py The only differences are: - add new args use_flash_attention - add new args flash_attention_recompute """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, use_flash_attention=use_flash_attention, flash_attention_recompute=flash_attention_recompute, )