optimum/habana/trl/trainer/dpo_config.py (39 lines of code) (raw):

# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Literal, Optional from trl.trainer.dpo_config import FDivergenceType from ... import GaudiTrainingArguments @dataclass class GaudiDPOConfig(GaudiTrainingArguments): r""" Initialize GaudiDPOConfig. Adapted from https://github.com/huggingface/trl/blob/v0.9.6/trl/trainer/dpo_config.py#L33 - inherit from GaudiTrainingArguments """ beta: float = 0.1 label_smoothing: float = 0 loss_type: Literal[ "sigmoid", "hinge", "ipo", "bco_pair", "sppo_hard", "nca_pair", "robust", "aot", "aot_pair", "exo_pair" ] = "sigmoid" label_pad_token_id: int = -100 padding_value: Optional[int] = None truncation_mode: str = "keep_end" max_length: Optional[int] = None max_prompt_length: Optional[int] = None max_target_length: Optional[int] = None is_encoder_decoder: Optional[bool] = None disable_dropout: bool = True generate_during_eval: bool = False precompute_ref_log_probs: bool = False dataset_num_proc: Optional[int] = None model_init_kwargs: Optional[Dict] = None ref_model_init_kwargs: Optional[Dict] = None model_adapter_name: Optional[str] = None ref_adapter_name: Optional[str] = None reference_free: bool = False force_use_ref_model: bool = False f_divergence_type: Optional[FDivergenceType] = FDivergenceType.REVERSE_KL f_alpha_divergence_coef: Optional[float] = 1.0 sync_ref_model: bool = False ref_model_mixup_alpha: float = 0.9 ref_model_sync_steps: int = 64 rpo_alpha: Optional[float] = None def __post_init__(self): if self.loss_type == "kto_pair": raise ValueError("Support for kto_pair has been removed in DPOTrainer. Please use KTOTrainer.") return super().__post_init__()