def get_ltx_video_models_for_export()

in optimum/exporters/openvino/convert.py [0:0]


def get_ltx_video_models_for_export(pipeline, exporter, int_dtype, float_dtype):
    models_for_export = {}
    text_encoder = pipeline.text_encoder
    export_config_constructor = TasksManager.get_exporter_config_constructor(
        model=text_encoder,
        exporter=exporter,
        library_name="diffusers",
        task="feature-extraction",
        model_type="t5-encoder-model",
    )
    export_config = export_config_constructor(
        text_encoder.config,
        int_dtype=int_dtype,
        float_dtype=float_dtype,
    )
    export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
    models_for_export["text_encoder"] = (text_encoder, export_config)
    transformer = pipeline.transformer
    transformer.config.vae_temporal_compression_ratio = pipeline.vae_temporal_compression_ratio
    transformer.config.vae_spatial_compression_ratio = pipeline.vae_spatial_compression_ratio
    export_config_constructor = TasksManager.get_exporter_config_constructor(
        model=transformer,
        exporter=exporter,
        library_name="diffusers",
        task="semantic-segmentation",
        model_type="ltx-video-transformer",
    )
    transformer_export_config = export_config_constructor(
        transformer.config, int_dtype=int_dtype, float_dtype=float_dtype
    )
    models_for_export["transformer"] = (transformer, transformer_export_config)
    # VAE Encoder https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/models/vae.py#L565
    vae_encoder = copy.deepcopy(pipeline.vae)
    vae_encoder.forward = lambda sample: {"latent_parameters": vae_encoder.encode(x=sample)["latent_dist"].parameters}
    vae_config_constructor = TasksManager.get_exporter_config_constructor(
        model=vae_encoder,
        exporter=exporter,
        library_name="diffusers",
        task="semantic-segmentation",
        model_type="ltx-vae-encoder",
    )
    vae_encoder_export_config = vae_config_constructor(
        vae_encoder.config, int_dtype=int_dtype, float_dtype=float_dtype
    )
    vae_encoder_export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
    models_for_export["vae_encoder"] = (vae_encoder, vae_encoder_export_config)

    # VAE Decoder
    vae_decoder = copy.deepcopy(pipeline.vae)
    vae_decoder.register_to_config(
        **{
            "latents_mean_data": vae_decoder.latents_mean.tolist(),
            "latents_std_data": vae_decoder.latents_std.tolist(),
        }
    )

    vae_decoder.forward = lambda latent_sample, timestep=None: vae_decoder.decode(z=latent_sample, temb=timestep)

    vae_config_constructor = TasksManager.get_exporter_config_constructor(
        model=vae_decoder,
        exporter=exporter,
        library_name="diffusers",
        task="semantic-segmentation",
        model_type="ltx-vae-decoder",
    )
    vae_decoder_export_config = vae_config_constructor(
        vae_decoder.config, int_dtype=int_dtype, float_dtype=float_dtype
    )
    vae_decoder_export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
    models_for_export["vae_decoder"] = (vae_decoder, vae_decoder_export_config)

    return models_for_export