in optimum/exporters/openvino/convert.py [0:0]
def get_ltx_video_models_for_export(pipeline, exporter, int_dtype, float_dtype):
models_for_export = {}
text_encoder = pipeline.text_encoder
export_config_constructor = TasksManager.get_exporter_config_constructor(
model=text_encoder,
exporter=exporter,
library_name="diffusers",
task="feature-extraction",
model_type="t5-encoder-model",
)
export_config = export_config_constructor(
text_encoder.config,
int_dtype=int_dtype,
float_dtype=float_dtype,
)
export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
models_for_export["text_encoder"] = (text_encoder, export_config)
transformer = pipeline.transformer
transformer.config.vae_temporal_compression_ratio = pipeline.vae_temporal_compression_ratio
transformer.config.vae_spatial_compression_ratio = pipeline.vae_spatial_compression_ratio
export_config_constructor = TasksManager.get_exporter_config_constructor(
model=transformer,
exporter=exporter,
library_name="diffusers",
task="semantic-segmentation",
model_type="ltx-video-transformer",
)
transformer_export_config = export_config_constructor(
transformer.config, int_dtype=int_dtype, float_dtype=float_dtype
)
models_for_export["transformer"] = (transformer, transformer_export_config)
# VAE Encoder https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/models/vae.py#L565
vae_encoder = copy.deepcopy(pipeline.vae)
vae_encoder.forward = lambda sample: {"latent_parameters": vae_encoder.encode(x=sample)["latent_dist"].parameters}
vae_config_constructor = TasksManager.get_exporter_config_constructor(
model=vae_encoder,
exporter=exporter,
library_name="diffusers",
task="semantic-segmentation",
model_type="ltx-vae-encoder",
)
vae_encoder_export_config = vae_config_constructor(
vae_encoder.config, int_dtype=int_dtype, float_dtype=float_dtype
)
vae_encoder_export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
models_for_export["vae_encoder"] = (vae_encoder, vae_encoder_export_config)
# VAE Decoder
vae_decoder = copy.deepcopy(pipeline.vae)
vae_decoder.register_to_config(
**{
"latents_mean_data": vae_decoder.latents_mean.tolist(),
"latents_std_data": vae_decoder.latents_std.tolist(),
}
)
vae_decoder.forward = lambda latent_sample, timestep=None: vae_decoder.decode(z=latent_sample, temb=timestep)
vae_config_constructor = TasksManager.get_exporter_config_constructor(
model=vae_decoder,
exporter=exporter,
library_name="diffusers",
task="semantic-segmentation",
model_type="ltx-vae-decoder",
)
vae_decoder_export_config = vae_config_constructor(
vae_decoder.config, int_dtype=int_dtype, float_dtype=float_dtype
)
vae_decoder_export_config.runtime_options = {"ACTIVATIONS_SCALE_FACTOR": "8.0"}
models_for_export["vae_decoder"] = (vae_decoder, vae_decoder_export_config)
return models_for_export