def pack_image_features()

in optimum/intel/openvino/modeling_visual_language.py [0:0]


    def pack_image_features(self, image_features, image_sizes, image_newline=None):
        from transformers.models.llava_next.modeling_llava_next import get_anyres_image_grid_shape, unpad_image

        """
        Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.

        Args:
            image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
                List of image feature tensor, each contains all the visual feature of all patches.
            image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
                Actual image size of each images (H, W).
            image_newline (`torch.Tensor` of shape `(embed_dim)`)
                New line embedding vector.
        Returns:
            image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
            feature_lens (`List[int]`)
                token length of each image in image_features
        """
        new_image_features = []
        feature_lens = []
        for image_idx, image_feature in enumerate(image_features):
            if image_feature.shape[0] > 1:
                base_image_feature = image_feature[0]
                image_feature = image_feature[1:]
                height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
                if height * width != base_image_feature.shape[0]:
                    raise ValueError("The number of patches is not consistent with the image size.")
                num_patch_width, num_patch_height = get_anyres_image_grid_shape(
                    image_sizes[image_idx],
                    self.config.image_grid_pinpoints,
                    self.config.vision_config.image_size,
                )
                image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                image_feature = unpad_image(image_feature, image_sizes[image_idx])
                if image_newline is not None:
                    image_feature = torch.cat(
                        (
                            image_feature,
                            image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
                        ),
                        dim=-1,
                    )
                image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                image_feature = torch.cat((base_image_feature, image_feature), dim=0)
            else:
                image_feature = image_feature[0]
                if image_newline is not None:
                    image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
            new_image_features.append(image_feature)
            feature_lens.append(image_feature.size(0))
        image_features = torch.cat(new_image_features, dim=0)
        feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
        return image_features, feature_lens