def post_init()

in optimum/intel/openvino/configuration.py [0:0]


    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        super().post_init()

        if self.dataset is not None and isinstance(self.dataset, str):
            speech_to_text_datasets = set(PREDEFINED_SPEECH_TO_TEXT_DATASETS.keys())
            visual_lm_datasets = set(PREDEFINED_VISUAL_LM_DATASETS.keys())
            stable_diffusion_datasets = set(PREDEFINED_SD_DATASETS.keys())
            language_datasets = set(PREDEFINED_LANGUAGE_DATASETS.keys())
            if (
                self.dataset
                not in PREDEFINED_CAUSAL_LANGUAGE_DATASETS
                | language_datasets
                | speech_to_text_datasets
                | stable_diffusion_datasets
                | visual_lm_datasets
            ):
                raise ValueError(
                    "You can only choose between the following datasets:"
                    f"{language_datasets} for text feature extraction models, "
                    f"{PREDEFINED_CAUSAL_LANGUAGE_DATASETS} for LLMs, "
                    f"{speech_to_text_datasets} for speech-to-text models, "
                    f"{visual_lm_datasets} for visual LLMs or "
                    f"{stable_diffusion_datasets} for diffusion models, but we found {self.dataset}."
                )

        if self.bits != 8:
            raise ValueError(f"Only support 8-bit for static quantization but found {self.bits}")

        if self.smooth_quant_alpha is not None and (
            self.smooth_quant_alpha != -1 and not (0 <= self.smooth_quant_alpha <= 1)
        ):
            raise ValueError(
                f"SmoothQuant alpha parameter can equal -1 or be in range [0, 1], but found {self.smooth_quant_alpha}"
            )