def to_nncf_dict()

in optimum/intel/openvino/configuration.py [0:0]


    def to_nncf_dict(self) -> Dict[str, Any]:
        """
        Returns a dictionary with the variables that are ready to use for nncf.quantize() call.
        """

        signed_bitness = {4: "int4", 8: "int8"}
        mode = self.dtype if self.dtype else signed_bitness[self.bits]
        if mode in signed_bitness.values():
            mode += "_sym" if self.sym else "_asym"
        if mode == "mxfp4":
            mode = "e2m1"
        mode = nncf.CompressWeightsMode(mode)

        awq = True if self.quant_method == OVQuantizationMethod.AWQ else None
        sensitivity_metric = nncf.SensitivityMetric(self.sensitivity_metric) if self.sensitivity_metric else None
        backup_mode = nncf.BackupMode(self.backup_precision) if self.backup_precision else None
        result = {
            "mode": mode,
            "ratio": self.ratio,
            "group_size": self.group_size,
            "ignored_scope": self.get_ignored_scope_instance(),
            "all_layers": self.all_layers,
            "sensitivity_metric": sensitivity_metric,
            "subset_size": self.num_samples or 128,
            "awq": awq,
            "scale_estimation": self.scale_estimation,
            "gptq": self.gptq,
            "lora_correction": self.lora_correction,
            "backup_mode": backup_mode,
            **self.kwargs,
        }
        return result