in optimum/intel/openvino/configuration.py [0:0]
def to_nncf_dict(self) -> Dict[str, Any]:
"""
Returns a dictionary with the variables that are ready to use for nncf.quantize() call.
"""
signed_bitness = {4: "int4", 8: "int8"}
mode = self.dtype if self.dtype else signed_bitness[self.bits]
if mode in signed_bitness.values():
mode += "_sym" if self.sym else "_asym"
if mode == "mxfp4":
mode = "e2m1"
mode = nncf.CompressWeightsMode(mode)
awq = True if self.quant_method == OVQuantizationMethod.AWQ else None
sensitivity_metric = nncf.SensitivityMetric(self.sensitivity_metric) if self.sensitivity_metric else None
backup_mode = nncf.BackupMode(self.backup_precision) if self.backup_precision else None
result = {
"mode": mode,
"ratio": self.ratio,
"group_size": self.group_size,
"ignored_scope": self.get_ignored_scope_instance(),
"all_layers": self.all_layers,
"sensitivity_metric": sensitivity_metric,
"subset_size": self.num_samples or 128,
"awq": awq,
"scale_estimation": self.scale_estimation,
"gptq": self.gptq,
"lora_correction": self.lora_correction,
"backup_mode": backup_mode,
**self.kwargs,
}
return result