notebooks/ipex/langchain_hf_pipelines.ipynb (168 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hugging Face Pipelines\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you're opening this Notebook on colab, you will probably need to install Langchain and 🤗 Optimum. Uncomment the following cell and run it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#! pip install langchain-huggingface optimum[ipex]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make sure your version of langchain-huggingface is at least v0.2 and 🤗 Optimum is at least v1.22.0 since the functionality was introduced in these versions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from optimum.intel.version import __version__\n",
"\n",
"print(\"optimum-intel version is\", __version__)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from optimum.intel.utils.import_utils import _langchain_hf_version\n",
"\n",
"print(\"langchain-huggingface version is\", _langchain_hf_version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Loading\n",
"\n",
"Models can be loaded by specifying the model parameters using the `from_model_id` method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_huggingface.llms import HuggingFacePipeline\n",
"\n",
"hf = HuggingFacePipeline.from_model_id(\n",
" model_id=\"gpt2\",\n",
" task=\"text-generation\",\n",
" pipeline_kwargs={\"max_new_tokens\": 10},\n",
" backend=\"ipex\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Chain\n",
"\n",
"With the model loaded into memory, you can compose it with a prompt to form a chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"chain = prompt | hf\n",
"\n",
"question = \"What is electroencephalography?\"\n",
"\n",
"print(chain.invoke({\"question\": question}))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To get response without prompt, you can bind skip_prompt=True with LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | hf.bind(skip_prompt=True)\n",
"\n",
"question = \"What is electroencephalography?\"\n",
"\n",
"print(chain.invoke({\"question\": question}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Streaming response :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for chunk in chain.stream(question):\n",
" print(chunk, end=\"\", flush=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 4
}