optimum/exporters/openvino/__main__.py (422 lines of code) (raw):

# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import logging import operator import warnings from functools import reduce from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Union from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from requests.exceptions import ConnectionError as RequestsConnectionError from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizerBase, ProcessorMixin from transformers.utils import is_torch_available from openvino import Core, Type, save_model from optimum.exporters import TasksManager from optimum.exporters.onnx.base import OnnxConfig from optimum.exporters.onnx.constants import SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED from optimum.intel.utils.import_utils import ( is_nncf_available, is_openvino_tokenizers_available, is_openvino_version, is_transformers_version, ) from optimum.intel.utils.modeling_utils import ( _infer_library_from_model_name_or_path, _OpenClipForZeroShotImageClassification, ) from .utils import ( _MAX_UNCOMPRESSED_SIZE, MULTI_MODAL_TEXT_GENERATION_MODELS, clear_class_registry, deduce_diffusers_dtype, load_preprocessors, ) FORCE_ATTN_MODEL_CLASSES = {"phi3-v": "eager", "gemma2": "sdpa", "llama4": "sdpa"} if TYPE_CHECKING: from optimum.intel.openvino.configuration import OVConfig if is_torch_available(): import torch logger = logging.getLogger(__name__) # init core before import openvino tokenizers to prevent failed attempt loading extension core = Core() def infer_task( task, model_name_or_path, subfolder: str = "", revision: Optional[str] = None, cache_dir: str = HUGGINGFACE_HUB_CACHE, token: Optional[Union[bool, str]] = None, library_name: Optional[str] = None, ): task = TasksManager.map_from_synonym(task) if task == "auto": if library_name == "open_clip": task = "zero-shot-image-classification" else: try: task = TasksManager._infer_task_from_model_name_or_path( model_name_or_path=model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token, library_name=library_name, ) except KeyError as e: raise KeyError( f"The task could not be automatically inferred. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}" ) except RequestsConnectionError as e: raise RequestsConnectionError( f"The task could not be automatically inferred as this is available only for models hosted on the Hugging Face Hub. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}" ) return task def main_export( model_name_or_path: str, output: Union[str, Path], task: str = "auto", device: str = "cpu", framework: Optional[str] = None, cache_dir: str = HUGGINGFACE_HUB_CACHE, trust_remote_code: bool = False, pad_token_id: Optional[int] = None, subfolder: str = "", revision: str = "main", force_download: bool = False, local_files_only: bool = False, use_auth_token: Optional[Union[bool, str]] = None, token: Optional[Union[bool, str]] = None, model_kwargs: Optional[Dict[str, Any]] = None, custom_export_configs: Optional[Dict[str, "OnnxConfig"]] = None, fn_get_submodels: Optional[Callable] = None, ov_config: "OVConfig" = None, stateful: bool = True, convert_tokenizer: bool = False, library_name: Optional[str] = None, model_loading_kwargs: Optional[Dict[str, Any]] = None, variant: Optional[str] = None, **kwargs_shapes, ): """ Full-suite OpenVINO export. Args: > Required parameters model_name_or_path (`str`): Model ID on huggingface.co or path on disk to the model repository to export. output (`Union[str, Path]`): Path indicating the directory where to store the generated OpenVINO model. > Optional parameters task (`Optional[str]`, defaults to `None`): The task to export the model for. If not specified, the task will be auto-inferred based on the model. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder. device (`str`, defaults to `"cpu"`): The device to use to do the export. Defaults to "cpu". framework (`Optional[str]`, defaults to `None`): The framework to use for the ONNX export (`"pt"` or `"tf"`). If not provided, will attempt to automatically detect the framework for the checkpoint. cache_dir (`Optional[str]`, defaults to `None`): Path indicating where to store cache. The default Hugging Face cache path will be used by default. trust_remote_code (`bool`, defaults to `False`): Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the model repository. pad_token_id (`Optional[int]`, defaults to `None`): This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it. subfolder (`str`, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo either locally or on huggingface.co, you can specify the folder name here. revision (`str`, defaults to `"main"`): Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. force_download (`bool`, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. local_files_only (`Optional[bool]`, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). use_auth_token (Optional[Union[bool, str]], defaults to `None`): Deprecated. Please use `token` instead. token (Optional[Union[bool, str]], defaults to `None`): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). model_kwargs (`Optional[Dict[str, Any]]`, defaults to `None`): Experimental usage: keyword arguments to pass to the model during the export. This argument should be used along the `custom_export_configs` argument in case, for example, the model inputs/outputs are changed (for example, if `model_kwargs={"output_attentions": True}` is passed). custom_export_configs (`Optional[Dict[str, OnnxConfig]]`, defaults to `None`): Experimental usage: override the default export config used for the given model. This argument may be useful for advanced users that desire a finer-grained control on the export. An example is available [here](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model). fn_get_submodels (`Optional[Callable]`, defaults to `None`): Experimental usage: Override the default submodels that are used at the export. This is especially useful when exporting a custom architecture that needs to split the ONNX (e.g. encoder-decoder). If unspecified with custom models, optimum will try to use the default submodels used for the given task, with no guarantee of success. stateful (`bool`, defaults to `True`): Produce stateful model where all kv-cache inputs and outputs are hidden in the model and are not exposed as model inputs and outputs. Applicable only for decoder models. **kwargs_shapes (`Dict`): Shapes to use during inference. This argument allows to override the default shapes used during the ONNX export. Example usage: ```python >>> from optimum.exporters.openvino import main_export >>> main_export("gpt2", output="gpt2_ov/") ``` """ from optimum.exporters.openvino.convert import export_from_model if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed soon. Please use the `token` argument instead.", FutureWarning, ) if token is not None: raise ValueError("You cannot use both `use_auth_token` and `token` arguments at the same time.") token = use_auth_token if framework is None: framework = TasksManager.determine_framework( model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token ) if library_name is None: library_name = _infer_library_from_model_name_or_path( model_name_or_path=model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token, ) if library_name == "sentence_transformers": logger.warning( "Library name is not specified. There are multiple possible variants: `sentence_tenasformers`, `transformers`." "`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers" ) library_name = "transformers" original_task = task task = infer_task( task, model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token, library_name=library_name, ) do_gptq_patching = False do_quant_patching = False custom_architecture = False patch_16bit = False loading_kwargs = model_loading_kwargs or {} if variant is not None: loading_kwargs["variant"] = variant dtype = loading_kwargs.get("torch_dtype", None) if isinstance(dtype, str): dtype = getattr(torch, dtype) if dtype != "auto" else dtype if library_name == "transformers": config = AutoConfig.from_pretrained( model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token, local_files_only=local_files_only, force_download=force_download, trust_remote_code=trust_remote_code, ) quantization_config = getattr(config, "quantization_config", None) supported_quant_methods = ["gptq"] if is_openvino_version(">=", "2024.6.0"): supported_quant_methods.append("awq") do_quant_patching = quantization_config and quantization_config["quant_method"] in supported_quant_methods do_gptq_patching = do_quant_patching and quantization_config["quant_method"] == "gptq" model_type = config.model_type.replace("_", "-") if model_type not in TasksManager._SUPPORTED_MODEL_TYPE: custom_architecture = True if custom_export_configs is None: raise ValueError( f"Trying to export a {model_type} model, that is a custom or unsupported architecture, but no custom export configuration was passed as `custom_export_configs`. Please refer to https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#custom-export-of-transformers-models for an example on how to export custom models. Please open an issue at https://github.com/huggingface/optimum-intel/issues if you would like the model type {model_type} to be supported natively in the OpenVINO export." ) elif task not in TasksManager.get_supported_tasks_for_model_type( model_type, exporter="openvino", library_name=library_name ): if original_task == "auto": autodetected_message = " (auto-detected)" else: autodetected_message = "" model_tasks = TasksManager.get_supported_tasks_for_model_type( model_type, exporter="openvino", library_name=library_name ) raise ValueError( f"Asked to export a {model_type} model for the task {task}{autodetected_message}, but the Optimum OpenVINO exporter only supports the tasks {', '.join(model_tasks.keys())} for {model_type}. Please use a supported task. Please open an issue at https://github.com/huggingface/optimum/issues if you would like the task {task} to be supported in the ONNX export for {model_type}." ) if ( is_transformers_version(">=", "4.36") and is_transformers_version("<=", "4.45.0") and model_type in SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED ): loading_kwargs["attn_implementation"] = "eager" # some models force flash_attn attention by default that does not support load model on cpu if is_transformers_version(">=", "4.36") and model_type in FORCE_ATTN_MODEL_CLASSES: loading_kwargs["_attn_implementation"] = FORCE_ATTN_MODEL_CLASSES[model_type] if model_type == "phi4mm": if "activation_checkpointing" in config.audio_processor["config"]: config.audio_processor["config"]["activation_checkpointing"] = "" config._attn_implementation = "sdpa" loading_kwargs["config"] = config # there are some difference between remote and in library representation of past key values for some models, # for avoiding confusion we disable remote code for them if ( trust_remote_code and model_type in {"falcon", "mpt", "phi"} and ("with-past" in task or original_task == "auto") and not custom_export_configs ): logger.warning( f"Model type `{model_type}` export for task `{task}` is not supported for loading with `trust_remote_code=True`" "using default export configuration, `trust_remote_code` will be disabled. " "Please provide custom export config if you want load model with remote code." ) trust_remote_code = False if dtype == "auto": dtype = getattr(config, "torch_dtype") if ( dtype is None and framework == "pt" and ( task.startswith("text-generation") or getattr(config, "model_type", "").replace("_", "-") in MULTI_MODAL_TEXT_GENERATION_MODELS ) and getattr(config, "torch_dtype", torch.float32) in [torch.float16, torch.bfloat16] ): if ov_config is not None and ov_config.dtype in {"fp16", "fp32"}: dtype = torch.float16 if ov_config.dtype == "fp16" else torch.float32 elif is_openvino_version(">=", "2024.2") and config.torch_dtype == torch.float16: dtype = torch.float16 elif is_openvino_version(">=", "2024.3") and config.torch_dtype == torch.bfloat16: dtype = torch.bfloat16 if dtype is not None: if dtype in [torch.float16, torch.bfloat16]: patch_16bit = True loading_kwargs["torch_dtype"] = dtype # Patch the modules to export of GPTQ models w/o GPU if do_quant_patching: orig_cuda_check = torch.cuda.is_available torch.cuda.is_available = lambda: True if do_gptq_patching: from optimum.gptq import GPTQQuantizer orig_post_init_model = GPTQQuantizer.post_init_model def post_init_model(self, model): from auto_gptq import exllama_set_max_input_length class StoreAttr(object): pass model.quantize_config = StoreAttr() model.quantize_config.desc_act = self.desc_act if self.desc_act and not self.disable_exllama and self.max_input_length is not None: model = exllama_set_max_input_length(model, self.max_input_length) return model GPTQQuantizer.post_init_model = post_init_model elif library_name == "diffusers" and is_openvino_version(">=", "2024.6"): _loading_kwargs = {} if variant is None else {"variant": variant} if dtype == "auto" or dtype is None: dtype = deduce_diffusers_dtype( model_name_or_path, revision=revision, cache_dir=cache_dir, token=token, local_files_only=local_files_only, force_download=force_download, trust_remote_code=trust_remote_code, **_loading_kwargs, ) if ( dtype in {torch.bfloat16, torch.float16} and ov_config is not None and ov_config.dtype in {"fp16", "fp32"} ): dtype = torch.float16 if ov_config.dtype == "fp16" else torch.float32 if dtype in [torch.float16, torch.bfloat16]: loading_kwargs["torch_dtype"] = dtype patch_16bit = True if loading_kwargs.get("torch_dtype") == "auto": loading_kwargs["torch_dtype"] = dtype try: if library_name == "open_clip": model = _OpenClipForZeroShotImageClassification.from_pretrained(model_name_or_path, cache_dir=cache_dir) else: model = TasksManager.get_model_from_task( task, model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token, local_files_only=local_files_only, force_download=force_download, trust_remote_code=trust_remote_code, framework=framework, device=device, library_name=library_name, **loading_kwargs, ) needs_pad_token_id = task == "text-classification" and getattr(model.config, "pad_token_id", None) is None if needs_pad_token_id: if pad_token_id is not None: model.config.pad_token_id = pad_token_id else: tok = AutoTokenizer.from_pretrained(model_name_or_path) pad_token_id = getattr(tok, "pad_token_id", None) if pad_token_id is None: raise ValueError( "Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument" ) model.config.pad_token_id = pad_token_id if hasattr(model.config, "export_model_type"): model_type = model.config.export_model_type.replace("_", "-") else: model_type = model.config.model_type.replace("_", "-") if ( not custom_architecture and library_name != "diffusers" and task + "-with-past" in TasksManager.get_supported_tasks_for_model_type( model_type, exporter="openvino", library_name=library_name ) ): # Make -with-past the default if --task was not explicitely specified if original_task == "auto": task = task + "-with-past" else: logger.info( f"The task `{task}` was manually specified, and past key values will not be reused in the decoding." f" if needed, please pass `--task {task}-with-past` to export using the past key values." ) if original_task == "auto": synonyms_for_task = sorted(TasksManager.synonyms_for_task(task)) if synonyms_for_task: synonyms_for_task = ", ".join(synonyms_for_task) possible_synonyms = f" (possible synonyms are: {synonyms_for_task})" else: possible_synonyms = "" logger.info(f"Automatic task detection to {task}{possible_synonyms}.") preprocessors = load_preprocessors( model_name_or_path, subfolder=subfolder, trust_remote_code=trust_remote_code, model_type=model_type ) submodel_paths = export_from_model( model=model, output=output, task=task, ov_config=ov_config, stateful=stateful, model_kwargs=model_kwargs, custom_export_configs=custom_export_configs, fn_get_submodels=fn_get_submodels, preprocessors=preprocessors, device=device, trust_remote_code=trust_remote_code, patch_16bit_model=patch_16bit, **kwargs_shapes, ) if convert_tokenizer: maybe_convert_tokenizers(library_name, output, model, preprocessors, task=task) clear_class_registry() del model gc.collect() for submodel_path in submodel_paths: submodel_path = Path(output) / submodel_path if (not submodel_path.is_file()) or (submodel_path.stat().st_size == 0): raise RuntimeError( f"An issue happenned during export : {submodel_path.name} was not converted and saved as expected." ) submodel = core.read_model(submodel_path) quantization_config = None if ov_config is None: num_parameters = 0 for op in submodel.get_ops(): if op.get_type_name() == "Constant" and op.get_element_type() in [Type.f16, Type.f32, Type.bf16]: num_parameters += reduce(operator.mul, op.shape, 1) del op if num_parameters >= _MAX_UNCOMPRESSED_SIZE: if is_nncf_available(): quantization_config = {"bits": 8, "sym": False} logger.info("The model weights will be quantized to int8_asym.") else: logger.warning( "The model will be converted with no weights quantization. Quantization of the weights to int8 " "requires nncf. Please install it with `pip install nncf`" ) break else: quantization_config = ov_config.quantization_config if quantization_config is None: del submodel gc.collect() continue if not is_nncf_available(): raise ImportError( "Quantization of the weights requires nncf, please install it with `pip install nncf`" ) from optimum.intel.openvino.quantization import _weight_only_quantization _weight_only_quantization(submodel, quantization_config) compressed_submodel_path = submodel_path.parent / f"{submodel_path.stem}_compressed.xml" save_model(submodel, compressed_submodel_path, compress_to_fp16=False) del submodel gc.collect() submodel_path.unlink() submodel_path.with_suffix(".bin").unlink() compressed_submodel_path.rename(submodel_path) compressed_submodel_path.with_suffix(".bin").rename(submodel_path.with_suffix(".bin")) finally: # Unpatch modules after quantized model export if do_quant_patching: torch.cuda.is_available = orig_cuda_check if do_gptq_patching: GPTQQuantizer.post_init_model = orig_post_init_model def maybe_convert_tokenizers(library_name: str, output: Path, model=None, preprocessors=None, task=None): """ Tries to convert tokenizers to OV format and export them to disk. Arguments: library_name (`str`): The library name. output (`Path`): Path to save converted tokenizers to. model (`PreTrainedModel`, *optional*, defaults to None): Model instance. preprocessors (`Iterable`, *optional*, defaults to None): Iterable possibly containing tokenizers to be converted. task (`str`, *optional*, defaults to None): The task to export the model for. Affects tokenizer conversion parameters. """ from optimum.exporters.openvino.convert import export_tokenizer if is_openvino_tokenizers_available(): if library_name != "diffusers" and preprocessors: processor_chat_template = None tokenizer = next(filter(lambda it: isinstance(it, PreTrainedTokenizerBase), preprocessors), None) if len(preprocessors) > 1: for processor in preprocessors: if isinstance(processor, ProcessorMixin) and hasattr(processor, "chat_template"): processor_chat_template = processor.chat_template if tokenizer: try: export_tokenizer(tokenizer, output, task=task, processor_chat_template=processor_chat_template) except Exception as exception: logger.warning( "Could not load tokenizer using specified model ID or path. OpenVINO tokenizer/detokenizer " f"models won't be generated. Exception: {exception}" ) elif model: for tokenizer_name in ("tokenizer", "tokenizer_2", "tokenizer_3"): tokenizer = getattr(model, tokenizer_name, None) if tokenizer: export_tokenizer(tokenizer, output / tokenizer_name, task=task) else: logger.warning("Tokenizer won't be converted.")