optimum/intel/neural_compressor/configuration.py (57 lines of code) (raw):
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict, Optional, Union
from neural_compressor.config import DistillationConfig, WeightPruningConfig, _BaseQuantizationConfig
from optimum.configuration_utils import BaseConfig
from ..utils.import_utils import _neural_compressor_version, _torch_version
_quantization_model = {
"post_training_dynamic_quant": "dynamic",
"post_training_static_quant": "static",
"quant_aware_training": "aware_training",
"post_training_weight_only": "weight_only",
}
logger = logging.getLogger(__name__)
class INCConfig(BaseConfig):
CONFIG_NAME = "inc_config.json"
FULL_CONFIGURATION_FILE = "inc_config.json"
def __init__(
self,
quantization: Optional[Union[Dict, _BaseQuantizationConfig]] = None,
pruning: Optional[Union[Dict, _BaseQuantizationConfig]] = None,
distillation: Optional[Union[Dict, _BaseQuantizationConfig]] = None,
**kwargs,
):
super().__init__()
self.torch_version = _torch_version
self.neural_compressor_version = _neural_compressor_version
self.quantization = self._create_quantization_config(quantization) or {}
self.pruning = self._create_pruning_config(pruning) or {}
self.distillation = self._create_distillation_config(distillation) or {}
@staticmethod
def _create_quantization_config(config: Union[Dict, _BaseQuantizationConfig]):
# TODO : add activations_dtype and weights_dtype
if isinstance(config, _BaseQuantizationConfig):
approach = _quantization_model[config.approach]
config = {
"is_static": approach != "dynamic",
"dataset_num_samples": config.calibration_sampling_size[0] if approach == "static" else None,
# "approach" : approach,
}
return config
@staticmethod
def _create_pruning_config(config: Union[Dict, WeightPruningConfig]):
if isinstance(config, WeightPruningConfig):
weight_compression = config.weight_compression
config = {
"approach": weight_compression.pruning_type,
"pattern": weight_compression.pattern,
"sparsity": weight_compression.target_sparsity,
# "operators": weight_compression.pruning_op_types,
# "start_step": weight_compression.start_step,
# "end_step": weight_compression.end_step,
# "scope": weight_compression.pruning_scope,
# "frequency": weight_compression.pruning_frequency,
}
return config
@staticmethod
def _create_distillation_config(config: Union[Dict, DistillationConfig]):
if isinstance(config, DistillationConfig):
criterion = getattr(config.criterion, "config", config.criterion)
criterion = next(iter(criterion.values()))
config = {
"teacher_model_name_or_path": config.teacher_model.config._name_or_path,
"temperature": criterion.temperature,
# "loss_types": criterion.loss_types,
# "loss_weights": criterion.loss_weights,
}
return config