optimum/intel/neural_compressor/configuration.py (57 lines of code) (raw):

# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Dict, Optional, Union from neural_compressor.config import DistillationConfig, WeightPruningConfig, _BaseQuantizationConfig from optimum.configuration_utils import BaseConfig from ..utils.import_utils import _neural_compressor_version, _torch_version _quantization_model = { "post_training_dynamic_quant": "dynamic", "post_training_static_quant": "static", "quant_aware_training": "aware_training", "post_training_weight_only": "weight_only", } logger = logging.getLogger(__name__) class INCConfig(BaseConfig): CONFIG_NAME = "inc_config.json" FULL_CONFIGURATION_FILE = "inc_config.json" def __init__( self, quantization: Optional[Union[Dict, _BaseQuantizationConfig]] = None, pruning: Optional[Union[Dict, _BaseQuantizationConfig]] = None, distillation: Optional[Union[Dict, _BaseQuantizationConfig]] = None, **kwargs, ): super().__init__() self.torch_version = _torch_version self.neural_compressor_version = _neural_compressor_version self.quantization = self._create_quantization_config(quantization) or {} self.pruning = self._create_pruning_config(pruning) or {} self.distillation = self._create_distillation_config(distillation) or {} @staticmethod def _create_quantization_config(config: Union[Dict, _BaseQuantizationConfig]): # TODO : add activations_dtype and weights_dtype if isinstance(config, _BaseQuantizationConfig): approach = _quantization_model[config.approach] config = { "is_static": approach != "dynamic", "dataset_num_samples": config.calibration_sampling_size[0] if approach == "static" else None, # "approach" : approach, } return config @staticmethod def _create_pruning_config(config: Union[Dict, WeightPruningConfig]): if isinstance(config, WeightPruningConfig): weight_compression = config.weight_compression config = { "approach": weight_compression.pruning_type, "pattern": weight_compression.pattern, "sparsity": weight_compression.target_sparsity, # "operators": weight_compression.pruning_op_types, # "start_step": weight_compression.start_step, # "end_step": weight_compression.end_step, # "scope": weight_compression.pruning_scope, # "frequency": weight_compression.pruning_frequency, } return config @staticmethod def _create_distillation_config(config: Union[Dict, DistillationConfig]): if isinstance(config, DistillationConfig): criterion = getattr(config.criterion, "config", config.criterion) criterion = next(iter(criterion.values())) config = { "teacher_model_name_or_path": config.teacher_model.config._name_or_path, "temperature": criterion.temperature, # "loss_types": criterion.loss_types, # "loss_weights": criterion.loss_weights, } return config