optimum/intel/openvino/modeling_timm.py (190 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import OrderedDict
from typing import Dict, List, Optional, Union
import numpy as np
import timm
import torch
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from packaging import version
from timm.layers.config import set_fused_attn
from timm.models._hub import load_model_config_from_hf
from transformers import PretrainedConfig, PreTrainedModel
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from transformers.image_transforms import resize, to_channel_dimension_format
from transformers.image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageFeatureExtractionMixin,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from transformers.modeling_outputs import ImageClassifierOutput
from transformers.utils import TensorType
from optimum.exporters.onnx.config import VisionOnnxConfig
from optimum.utils import NormalizedVisionConfig
from .utils import _is_timm_ov_dir
set_fused_attn(False, False)
class TimmConfig(PretrainedConfig):
model_type = "timm"
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: str = HUGGINGFACE_HUB_CACHE,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
) -> "PretrainedConfig":
if _is_timm_ov_dir(pretrained_model_name_or_path):
config_path = os.path.join(pretrained_model_name_or_path, "config.json")
return cls.from_json_file(config_path)
kwargs["cache_dir"] = cache_dir
kwargs["force_download"] = force_download
kwargs["local_files_only"] = local_files_only
kwargs["revision"] = revision
config_dict = load_model_config_from_hf(pretrained_model_name_or_path)[0]
config_dict["num_labels"] = config_dict.pop("num_classes")
config_dict["image_size"] = config_dict.get("input_size")[-1]
return cls.from_dict(config_dict, **kwargs)
class TimmOnnxConfig(VisionOnnxConfig):
DEFAULT_TIMM_ONNX_OPSET = 13
outputs = OrderedDict([("logits", {0: "batch_size"})])
NORMALIZED_CONFIG_CLASS = NormalizedVisionConfig
MIN_TORCH_VERSION = version.parse("1.11")
@property
def inputs(self) -> Dict[str, Dict[int, str]]:
return {"pixel_values": {0: "batch_size", 1: "num_channels", 2: "height", 3: "width"}}
class TimmForImageClassification(PreTrainedModel):
def __init__(self, config: TimmConfig, num_labels: int = None, **kwargs) -> None:
super().__init__(config, **kwargs)
if num_labels:
config.num_labels = num_labels
self.model = timm.create_model(
"hf-hub:" + self.config.hf_hub_id,
num_classes=self.config.num_labels,
pretrained=True,
in_chans=3,
)
self.model.eval()
@classmethod
def from_pretrained(cls, model_name_or_path, **kwargs):
config = TimmConfig.from_pretrained(model_name_or_path, **kwargs)
return cls(config, **kwargs)
def forward(self, pixel_values: Optional[torch.Tensor] = None):
logits = self.model(pixel_values)
return ImageClassifierOutput(logits=logits)
# Adapted from ViTImageProcessor - https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/image_processing_vit.py
class TimmImageProcessor(BaseImageProcessor, ImageFeatureExtractionMixin):
r"""
Constructs a ViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
**kwargs,
):
timm_config_dict = load_model_config_from_hf(pretrained_model_name_or_path)[0]
_, im_h, im_w = timm_config_dict.get("input_size", [3, 224, 224])
image_preprocess_config_dict = {
"crop_size": {"height": im_h, "width": im_w},
"do_center_crop": True if timm_config_dict.get("crop_mode") == "center" else False,
"do_normalize": True,
"do_reduce_labels": False,
"do_rescale": True,
"do_resize": True,
"image_mean": timm_config_dict.get("mean", IMAGENET_STANDARD_MEAN),
"image_processor_type": "TimmImageProcessor",
"image_std": timm_config_dict.get("std", IMAGENET_STANDARD_STD),
"resample": 3,
"rescale_factor": 0.00392156862745098,
"size": {"height": im_h, "width": im_w},
}
return cls.from_dict(image_preprocess_config_dict, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample:
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
if image.ndim == 2:
image = np.stack([image] * 3, axis=-1)
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size_dict, resample=resample) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)