optimum/neuron/configuration_utils.py (198 lines of code) (raw):
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Neuron configuration class and utilities."""
import copy
import enum
import json
import os
from dataclasses import dataclass, is_dataclass
from typing import Any, Dict, Optional, Union
import torch
from transformers.utils import (
PushToHubMixin,
cached_file,
download_url,
is_remote_url,
logging,
)
from .utils.version_utils import get_neuronxcc_version
from .version import __version__
logger = logging.get_logger(__name__)
NEURON_CONFIG_NAME = "neuron_config.json"
_NEURON_CONFIG_FOR_KEY = {}
_KEY_FOR_NEURON_CONFIG = {}
def register_neuron_config(cls):
key = cls.__name__
assert issubclass(cls, NeuronConfig)
_KEY_FOR_NEURON_CONFIG[cls] = key
_NEURON_CONFIG_FOR_KEY[key] = cls
return cls
@dataclass
class NeuronConfig(PushToHubMixin):
# no-format
"""
Class that holds a configuration for a neuron model.
Must be subclassed.
"""
def __hash__(self):
return hash(self.to_json_string())
def __eq__(self, other):
if not isinstance(other, NeuronConfig):
return False
self_json = self.to_json_string()
other_json = other.to_json_string()
return self_json == other_json
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
config_file_name: Optional[Union[str, os.PathLike]] = None,
push_to_hub: bool = False,
**kwargs,
):
r"""
Save a neuron configuration object to the directory `save_directory`, so that it can be re-loaded using the
[`~NeuronConfig.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the configuration JSON file will be saved (will be created if it does not exist).
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"neuron_config.json"`):
Name of the generation configuration JSON file to be saved in `save_directory`.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
config_file_name = config_file_name if config_file_name is not None else NEURON_CONFIG_NAME
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
output_config_file = os.path.join(save_directory, config_file_name)
self.to_json_file(output_config_file)
logger.info(f"Configuration saved in {output_config_file}")
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=kwargs.get("token"),
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name: Union[str, os.PathLike],
config_file_name: Optional[Union[str, os.PathLike]] = None,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
) -> "NeuronConfig":
r"""
Instantiate a [`NeuronConfig`] from a neuron configuration file.
Args:
pretrained_model_name (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~NeuronConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"neuron_config.json"`):
Name of the neuron configuration JSON file to be loaded from `pretrained_model_name`.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
Returns:
[`NeuronConfig`]: The configuration object instantiated from this pretrained model.
```"""
config_file_name = config_file_name if config_file_name is not None else NEURON_CONFIG_NAME
config_path = os.path.join(pretrained_model_name, config_file_name)
config_path = str(config_path)
is_local = os.path.exists(config_path)
if os.path.isfile(config_path):
# Special case when config_path is a local file
resolved_config_file = config_path
is_local = True
elif is_remote_url(config_path):
configuration_file = config_path
resolved_config_file = download_url(config_path)
else:
configuration_file = config_file_name
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_config_file = cached_file(
pretrained_model_name,
configuration_file,
token=token,
revision=revision,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the configuration of '{pretrained_model_name}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
f" name. Otherwise, make sure '{pretrained_model_name}' is the correct path to a directory"
f" containing a {configuration_file} file"
)
try:
# Load config dict
with open(resolved_config_file, "r", encoding="utf-8") as reader:
text = reader.read()
config_dict = json.loads(text)
except (json.JSONDecodeError, UnicodeDecodeError):
raise EnvironmentError(
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
)
if is_local:
logger.info(f"loading configuration file {resolved_config_file}")
else:
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
return cls.from_dict(config_dict)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> "NeuronConfig":
"""
Instantiates a [`NeuronConfig`] from a Python dictionary of parameters.
Args:
config_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the configuration object.
Returns:
[`NeuronConfig`]: The configuration object instantiated from those parameters.
"""
for key in ["optimum_neuron_version", "_serialized_key", "neuronxcc_version"]:
if key not in config_dict:
raise ValueError(f"Invalid neuron configuration: missing mandatory {key} attribute.")
# Check versions
version = config_dict.pop("optimum_neuron_version")
if version != __version__:
raise ValueError(
f"This neuron configuration file was generated with optimum-neuron version {version}, but this version is {__version__}."
)
cfg_neuronxcc_version = config_dict.pop("neuronxcc_version")
neuronxcc_version = get_neuronxcc_version()
if cfg_neuronxcc_version != neuronxcc_version:
raise RuntimeError(
"This neuron configuration corresponds to a model exported using version"
f" {cfg_neuronxcc_version} of the neuronxcc compiler, but {neuronxcc_version} is installed."
)
# Retrieve neuron config class from serialized key
_serialized_key = config_dict.pop("_serialized_key")
if cls is NeuronConfig:
# Force the registration of the neuron configuration classes
from .models import neuron_config # noqa F401
# We need to identify the actual neuron configuration class for this serialized key
if _serialized_key is None:
raise ValueError("Neuron configuration is invalid: unable to identify the serialized key")
cls = _NEURON_CONFIG_FOR_KEY.get(_serialized_key, None)
if cls is None:
raise ValueError(f"No neuron configuration registered for the {_serialized_key} serialized key")
else:
assert _KEY_FOR_NEURON_CONFIG[cls] == _serialized_key
config = cls(**{**config_dict})
logger.info(f"Neuron config {config}")
return config
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self)
serializable_types = (str, int, float, bool)
def _to_dict(obj):
if obj is None or isinstance(obj, serializable_types):
return obj
elif isinstance(obj, enum.Enum):
return obj.value
elif isinstance(obj, torch.Tensor):
return obj.tolist()
elif isinstance(obj, list):
return [_to_dict(e) for e in obj]
elif isinstance(obj, dict):
return {_to_dict(k): _to_dict(v) for k, v in obj.items()}
elif isinstance(obj, tuple):
return str(tuple(_to_dict(e) for e in obj))
elif isinstance(obj, torch.dtype):
return str(obj).split(".")[1]
else:
as_dict = obj.__dict__
return _to_dict(as_dict)
output = _to_dict(output)
# Add serialized key as it is required to identify the NeuronConfig class when deserializing the file
cls = self.__class__
_serialized_key = _KEY_FOR_NEURON_CONFIG.get(cls, None)
if _serialized_key is None:
raise ValueError(f"Unable to identify the serialized key for {cls.__name__}. Did you register it ?")
output["_serialized_key"] = _serialized_key
# Add optimum-neuron version to check compatibility
output["optimum_neuron_version"] = __version__
# Also add compiler version
output["neuronxcc_version"] = get_neuronxcc_version()
return output
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this configuration instance in JSON format.
"""
config_dict = self.to_dict()
def convert_keys_to_string(obj):
if isinstance(obj, dict):
return {str(key): convert_keys_to_string(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_keys_to_string(item) for item in obj]
else:
return obj
def convert_dataclass_to_dict(obj):
if isinstance(obj, dict):
return {key: convert_dataclass_to_dict(value) for key, value in obj.items()}
elif is_dataclass(obj):
return obj.to_dict()
else:
return obj
config_dict = convert_keys_to_string(config_dict)
config_dict = convert_dataclass_to_dict(config_dict)
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this configuration instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())