optimum/neuron/models/inference/backend/modules/moe.py (37 lines of code) (raw):

# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/aws-neuron/neuronx-distributed-inference/blob/9993358ce052fd7a1bb4a7497a6318aac36ed95c/src/neuronx_distributed_inference/modules/moe.py from neuronx_distributed.modules.moe.expert_mlps import ExpertMLPs from neuronx_distributed.modules.moe.model import MoE from neuronx_distributed.modules.moe.routing import RouterTopK def initialize_moe_module( neuron_config, num_experts, top_k, hidden_size, intermediate_size, hidden_act, normalize_top_k_affinities=True, ): """ Initializes and returns an MoE module corresponding to the given configuration. """ router = RouterTopK( num_experts=num_experts, top_k=top_k, hidden_size=hidden_size, sequence_parallel_enabled=neuron_config.sequence_parallel_enabled, sequence_dimension=1, ) expert_mlps = ExpertMLPs( num_experts=num_experts, top_k=top_k, hidden_size=hidden_size, intermediate_size=intermediate_size, hidden_act=hidden_act, capacity_factor=neuron_config.capacity_factor, glu_mlp=neuron_config.glu_mlp, normalize_top_k_affinities=normalize_top_k_affinities, ) moe = MoE( router=router, expert_mlps=expert_mlps, sequence_parallel_enabled=neuron_config.sequence_parallel_enabled, sequence_dimension=1, ) # Set MoE module in eval mode moe.eval() return moe