optimum/neuron/models/inference/qwen3/modeling_qwen3.py (73 lines of code) (raw):
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/aws-neuron/neuronx-distributed-inference/blob/9993358ce052fd7a1bb4a7497a6318aac36ed95c/src/neuronx_distributed_inference/models/Qwen3/modeling_Qwen3.py
"""PyTorch Qwen3 model for NXD inference."""
import logging
import torch
from neuronx_distributed.parallel_layers.layers import (
ColumnParallelLinear,
ParallelEmbedding,
)
from torch import nn
from transformers.models.qwen3.configuration_qwen3 import Qwen3Config
from ..backend.config import NxDNeuronConfig
from ..backend.modules.attention.attention_base import NeuronAttentionBase
from ..backend.modules.custom_calls import CustomRMSNorm
from ..backend.modules.decoder import NxDDecoderModel
from ..llama.modeling_llama import (
LlamaNxDModelForCausalLM,
LlamaRotaryEmbedding,
NeuronLlamaDecoderLayer,
convert_state_dict_to_fused_qkv,
)
logger = logging.getLogger("Neuron")
class NeuronQwen3Attention(NeuronAttentionBase):
"""
Compared with NeuronLLamaAttention, this class uses CustomRMSNorm after the the query and key projections.
"""
def __init__(self, config: Qwen3Config, neuron_config: NxDNeuronConfig):
super().__init__(config, neuron_config)
self.q_layernorm = CustomRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
self.k_layernorm = CustomRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config)
class NeuronQwen3DecoderLayer(NeuronLlamaDecoderLayer):
"""
Just use the NeuronQwen3Attention instead of the NeuronLlamaAttention
"""
def __init__(self, config: Qwen3Config, neuron_config: NxDNeuronConfig):
super().__init__(config, neuron_config)
self.self_attn = NeuronQwen3Attention(config, neuron_config)
class NxDQwen3Model(NxDDecoderModel):
"""
The neuron version of the Qwen3Model
"""
def __init__(self, config: Qwen3Config, neuron_config: NxDNeuronConfig):
super().__init__(config, neuron_config)
self.embed_tokens = ParallelEmbedding(
config.vocab_size,
config.hidden_size,
config.pad_token_id,
dtype=neuron_config.torch_dtype,
shard_across_embedding=not neuron_config.vocab_parallel,
sequence_parallel_enabled=False,
pad=True,
use_spmd_rank=neuron_config.vocab_parallel,
)
self.lm_head = ColumnParallelLinear(
config.hidden_size,
config.vocab_size,
gather_output=not neuron_config.on_device_sampling,
bias=False,
pad=True,
)
self.layers = nn.ModuleList(
[NeuronQwen3DecoderLayer(config, neuron_config) for _ in range(config.num_hidden_layers)]
)
self.norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class Qwen3NxDModelForCausalLM(LlamaNxDModelForCausalLM):
"""
Qwen3 model for NxD inference.
This class is a wrapper around the NxDQwen3Model, which uses NeuronQwen3DecoderLayer.
"""
_model_cls = NxDQwen3Model
@staticmethod
def convert_hf_to_neuron_state_dict(state_dict: dict, config: Qwen3Config, neuron_config: NxDNeuronConfig) -> dict:
# Rename the QK projection layernorms to match the NeuronAttentionBase expectations
for l in range(config.num_hidden_layers):
attn_prefix = f"layers.{l}.self_attn"
state_dict[f"{attn_prefix}.k_layernorm.weight"] = state_dict[f"{attn_prefix}.k_norm.weight"]
state_dict.pop(f"{attn_prefix}.k_norm.weight")
state_dict[f"{attn_prefix}.q_layernorm.weight"] = state_dict[f"{attn_prefix}.q_norm.weight"]
state_dict.pop(f"{attn_prefix}.q_norm.weight")
if neuron_config.fused_qkv:
state_dict = convert_state_dict_to_fused_qkv(state_dict, config)
if neuron_config.vocab_parallel:
# TODO: this hack can be removed after replication_id is ready to use
state_dict["embed_tokens.rank_util.rank"] = torch.arange(0, neuron_config.local_ranks_size)
# to facilitate rank usage in attention
num_layers = config.num_hidden_layers
tp_degree = neuron_config.tp_degree
for i in range(num_layers):
state_dict[f"layers.{i}.self_attn.rank_util.rank"] = torch.arange(0, tp_degree, dtype=torch.int32)
# to facilitate rank usage in base model
state_dict["rank_util.rank"] = torch.arange(0, tp_degree, dtype=torch.int32)
return state_dict