optimum/neuron/peft/tuners/lora/model.py (16 lines of code) (raw):

# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ....utils.import_utils import is_peft_available from .layer import NEURON_LORA_MODULES if is_peft_available(): from peft.tuners.lora import LoraModel else: class LoraModel: pass class NeuronLoraModel(LoraModel): def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False): # We experiment with the custom modules feature for LoRA instead of overriding the methods. adapter_config = config[adapter_name] adapter_config._register_custom_module(NEURON_LORA_MODULES) super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) @staticmethod def _create_new_module(lora_config, adapter_name, target, **kwargs): lora_config._register_custom_module(NEURON_LORA_MODULES) return LoraModel._create_new_module(lora_config, adapter_name, target, **kwargs)