optimum/neuron/peft/utils/save_and_load.py (18 lines of code) (raw):

# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import torch from ...utils.import_utils import is_peft_available from ...utils.patching import Patcher if is_peft_available(): from peft.utils.save_and_load import get_peft_model_state_dict as orig_get_peft_model_state_dict else: def orig_get_peft_model_state_dict(*args, **kwargs): pass def has_valid_embedding_base_layer(layer): """Check if the layer has an embedding base layer""" from neuronx_distributed.parallel_layers.layers import BaseParallelLinear, ParallelEmbedding return hasattr(layer, "base_layer") and isinstance( layer.base_layer, (torch.nn.Linear, torch.nn.Embedding, ParallelEmbedding, BaseParallelLinear) ) @functools.wraps(orig_get_peft_model_state_dict) def get_peft_model_state_dict(*args, **kwargs): with Patcher([("peft.utils.save_and_load.has_valid_embedding_base_layer", has_valid_embedding_base_layer)]): return orig_get_peft_model_state_dict(*args, **kwargs)