optimum/neuron/peft/utils/save_and_load.py (18 lines of code) (raw):
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import torch
from ...utils.import_utils import is_peft_available
from ...utils.patching import Patcher
if is_peft_available():
from peft.utils.save_and_load import get_peft_model_state_dict as orig_get_peft_model_state_dict
else:
def orig_get_peft_model_state_dict(*args, **kwargs):
pass
def has_valid_embedding_base_layer(layer):
"""Check if the layer has an embedding base layer"""
from neuronx_distributed.parallel_layers.layers import BaseParallelLinear, ParallelEmbedding
return hasattr(layer, "base_layer") and isinstance(
layer.base_layer, (torch.nn.Linear, torch.nn.Embedding, ParallelEmbedding, BaseParallelLinear)
)
@functools.wraps(orig_get_peft_model_state_dict)
def get_peft_model_state_dict(*args, **kwargs):
with Patcher([("peft.utils.save_and_load.has_valid_embedding_base_layer", has_valid_embedding_base_layer)]):
return orig_get_peft_model_state_dict(*args, **kwargs)