optimum/neuron/pipelines/transformers/sentence_transformers.py (43 lines of code) (raw):

from typing import Dict from transformers.pipelines.base import GenericTensor, Pipeline from optimum.utils import is_sentence_transformers_available if is_sentence_transformers_available(): from optimum.exporters.tasks import TasksManager def is_sentence_transformer_model(model: str, token: str = None, revision: str = None): """Checks if the model is a sentence transformer model based on provided model id""" try: _library_name = TasksManager.infer_library_from_model(model, token=token, revision=revision) return _library_name == "sentence_transformers" except ValueError: return False class FeatureExtractionPipeline(Pipeline): """ Sentence Transformers compatible Feature extraction pipeline uses no model head. This pipeline extracts the sentence embeddings from the sentence transformers, which can be used in embedding-based tasks like clustering and search. The pipeline is based on the `transformers` library. And automatically used instead of the `transformers` library's pipeline when the model is a sentence transformer model. Example: ```python >>> from optimum.neuron import pipeline >>> extractor = pipeline(model="sentence-transformers/all-MiniLM-L6-v2", task="feature-extraction", export=True, batch_size=2, sequence_length=128) >>> result = extractor("This is a simple test.", return_tensors=True) >>> result.shape # This is a tensor of shape [1, dimension] representing the input string. torch.Size([1, 384]) ``` """ def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): if tokenize_kwargs is None: tokenize_kwargs = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) tokenize_kwargs["truncation"] = truncation preprocess_params = tokenize_kwargs postprocess_params = {} if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors return preprocess_params, {}, postprocess_params def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, _model_outputs, return_tensors=False): # Needed change for sentence transformers. # Check if the model outputs sentence embeddings or not. if hasattr(_model_outputs, "sentence_embedding"): model_outputs = _model_outputs.sentence_embedding else: model_outputs = _model_outputs # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)