optimum/neuron/utils/optimization_utils.py (51 lines of code) (raw):

# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimization utilities.""" import math import torch def get_attention_scores_sd(self, query, key, attn_mask): """Optimized attention for Stable Diffusion UNET.""" dtype = query.dtype if self.upcast_attention: query = query.float() key = key.float() def _custom_badbmm(a, b): bmm = torch.bmm(a, b) scaled = bmm * 0.125 return scaled # Check for square matmuls if query.size() == key.size(): attention_scores = _custom_badbmm(key, query.transpose(-1, -2)) if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=1).permute(0, 2, 1) attention_probs = attention_probs.to(dtype) else: attention_scores = _custom_badbmm(query, key.transpose(-1, -2)) if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) attention_probs = attention_probs.to(dtype) return attention_probs def get_attention_scores_sdxl(self, query, key, attn_mask): """Optimized attention for SDXL UNET.""" def _custom_badbmm(a, b, scale): bmm = torch.bmm(a, b) scaled = bmm * scale return scaled if query.size() == key.size(): attention_scores = _custom_badbmm(key, query.transpose(-1, -2), self.scale) attention_probs = attention_scores.softmax(dim=1).permute(0, 2, 1) else: attention_scores = _custom_badbmm(query, key.transpose(-1, -2), self.scale) attention_probs = attention_scores.softmax(dim=-1) return attention_probs def neuron_scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=None, is_causal=None): orig_shape = None if len(query.shape) == 4: orig_shape = query.shape def to3d(x): return x.reshape(-1, x.shape[2], x.shape[3]) query, key, value = map(to3d, [query, key, value]) attention_scores = torch.bmm(key, query.transpose(-1, -2)) * (1 / math.sqrt(query.size(-1))) attention_probs = attention_scores.softmax(dim=1) if query.size() == key.size(): attention_probs = attention_probs.permute(0, 2, 1) attn_out = torch.bmm(attention_probs, value) if orig_shape: attn_out = attn_out.reshape(orig_shape[0], orig_shape[1], attn_out.shape[1], attn_out.shape[2]) return attn_out