in templates/inference-endpoints/preprocessing/1/model.py [0:0]
def _to_word_list_format(self, word_dict: List[List[str]]):
'''
format of word_dict
len(word_dict) should be same to batch_size
word_dict[i] means the words for batch i
len(word_dict[i]) must be 1, which means it only contains 1 string
This string can contain several sentences and split by ",".
For example, if word_dict[2] = " I am happy, I am sad", then this function will return
the ids for two short sentences " I am happy" and " I am sad".
'''
assert self.tokenizer != None, "need to set tokenizer"
flat_ids = []
offsets = []
for word_dict_item in word_dict:
item_flat_ids = []
item_offsets = []
if isinstance(word_dict_item[0], bytes):
word_dict_item = [word_dict_item[0].decode()]
words = list(csv.reader(word_dict_item))[0]
for word in words:
ids = self.tokenizer.encode(word)
if len(ids) == 0:
continue
item_flat_ids += ids
item_offsets.append(len(ids))
flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))