templates/inference-endpoints/preprocessing/1/model.py (92 lines of code) (raw):

# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import csv import json from pathlib import Path from typing import List, Sequence import numpy as np import triton_python_backend_utils as pb_utils from tokenizers import Tokenizer INPUT_NAMES = { "INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS" } class TritonPythonModel: """Your Python model must use the same class name. Every Python model that is created must have "TritonPythonModel" as the class name. """ __slots__ = ( "tokenizer", "pad_token", "pad_token_id", "input_id_dtype", "request_input_len_dtype", "bad_words_ids_dtype", "stop_words_ids_dtype" ) def initialize(self, args): """`initialize` is called only once when the model is being loaded. Implementing `initialize` function is optional. This function allows the model to initialize any state associated with this model. Parameters ---------- args : dict Both keys and values are strings. The dictionary keys and values are: * model_config: A JSON string containing the model configuration * model_instance_kind: A string containing model instance kind * model_instance_device_id: A string containing model instance device ID * model_repository: Model repository path * model_version: Model version * model_name: Model name """ # Parse model configs model_config = json.loads(args['model_config']) tokenizer_dir = Path(model_config['parameters']['tokenizer_dir']['string_value']) tokenizer_path = tokenizer_dir.joinpath("tokenizer.json") pad_to_multiple_of = int(model_config['parameters']['pad_to_multiple_of']['string_value']) special_tokens_map_path = tokenizer_dir.joinpath("special_tokens_map.json") with open(special_tokens_map_path, "r", encoding="utf-8") as special_tokens_f: special_tokens_map = json.load(special_tokens_f) self.tokenizer = Tokenizer.from_file(str(tokenizer_path)) if "eos_token" in special_tokens_map: eos_token = special_tokens_map["eos_token"]["content"] eos_token_id = self.tokenizer.encode(eos_token, add_special_tokens=False).ids[0] # self.tokenizer.enable_padding( # direction="left", pad_id=eos_token_id, pad_token=eos_token, pad_to_multiple_of=pad_to_multiple_of # ) self.pad_token = eos_token self.pad_token_id = eos_token_id # Parse model output configs and convert Triton types to numpy types for name in INPUT_NAMES: dtype = pb_utils.triton_string_to_numpy( pb_utils.get_output_config_by_name(model_config, name)['data_type'] ) setattr(self, name.lower() + "_dtype", dtype) def execute(self, requests: Sequence): """`execute` must be implemented in every Python model. `execute` function receives a list of pb_utils.InferenceRequest as the only argument. This function is called when an inference is requested for this model. Depending on the batching configuration (e.g. Dynamic Batching) used, `requests` may contain multiple requests. Every Python model, must create one pb_utils.InferenceResponse for every pb_utils.InferenceRequest in `requests`. If there is an error, you can set the error argument when creating a pb_utils.InferenceResponse. Parameters ---------- requests : list A list of pb_utils.InferenceRequest Returns ------- list A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests` """ responses = [] # Every Python backend must iterate over every request # and create a pb_utils.InferenceResponse for each of them. for request in requests: response = self.handle_request(request) responses.append(response) # You should return a list of pb_utils.InferenceResponse. Length # of this list must match the length of `requests` list. return responses def finalize(self): """`finalize` is called only once when the model is being unloaded. Implementing `finalize` function is optional. This function allows the model to perform any necessary cleanup before exit. """ print('Cleaning up...') def handle_request(self, request: Sequence): # Get input tensors query = pb_utils.get_input_tensor_by_name(request, 'QUERY').as_numpy().item().decode("utf-8") request_output_len = pb_utils.get_input_tensor_by_name(request, 'REQUEST_OUTPUT_LEN') # bad_words_dict = pb_utils.get_input_tensor_by_name(request, 'BAD_WORDS_DICT').as_numpy().item() # stop_words_dict = pb_utils.get_input_tensor_by_name(request, 'STOP_WORDS_DICT').as_numpy().item() # Preprocessing input data. # input_id, request_input_len = self._create_request(query) encoding = self.tokenizer.encode(query) # bad_words = self._to_word_list_format(bad_words_dict) # stop_words = self._to_word_list_format(stop_words_dict) # Create output tensors. You need pb_utils.Tensor # objects to create pb_utils.InferenceResponse. bad_words_ids = pb_utils.Tensor('BAD_WORDS_IDS', np.array([[], []], dtype=self.bad_words_ids_dtype)) stop_words_ids = pb_utils.Tensor('STOP_WORDS_IDS', np.array([[], []], dtype=self.stop_words_ids_dtype)) input_ids = pb_utils.Tensor('INPUT_ID', np.array([encoding.ids], dtype=self.input_id_dtype)) request_input_len = pb_utils.Tensor( 'REQUEST_INPUT_LEN', np.array([[len(encoding.ids)]], dtype=self.request_input_len_dtype) ) # Create InferenceResponse. You can set an error here in case # there was a problem with handling this inference request. # Below is an example of how you can set errors in inference # response: # # pb_utils.InferenceResponse( # output_tensors=..., TritonError("An error occurred")) return pb_utils.InferenceResponse(output_tensors=[ input_ids, bad_words_ids, stop_words_ids, request_input_len, request_output_len ]) def _to_word_list_format(self, word_dict: List[List[str]]): ''' format of word_dict len(word_dict) should be same to batch_size word_dict[i] means the words for batch i len(word_dict[i]) must be 1, which means it only contains 1 string This string can contain several sentences and split by ",". For example, if word_dict[2] = " I am happy, I am sad", then this function will return the ids for two short sentences " I am happy" and " I am sad". ''' assert self.tokenizer != None, "need to set tokenizer" flat_ids = [] offsets = [] for word_dict_item in word_dict: item_flat_ids = [] item_offsets = [] if isinstance(word_dict_item[0], bytes): word_dict_item = [word_dict_item[0].decode()] words = list(csv.reader(word_dict_item))[0] for word in words: ids = self.tokenizer.encode(word) if len(ids) == 0: continue item_flat_ids += ids item_offsets.append(len(ids)) flat_ids.append(np.array(item_flat_ids)) offsets.append(np.cumsum(np.array(item_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))