templates/inference-endpoints/preprocessing/1/model.py (92 lines of code) (raw):
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import csv
import json
from pathlib import Path
from typing import List, Sequence
import numpy as np
import triton_python_backend_utils as pb_utils
from tokenizers import Tokenizer
INPUT_NAMES = {
"INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS"
}
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
__slots__ = (
"tokenizer",
"pad_token",
"pad_token_id",
"input_id_dtype",
"request_input_len_dtype",
"bad_words_ids_dtype",
"stop_words_ids_dtype"
)
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# Parse model configs
model_config = json.loads(args['model_config'])
tokenizer_dir = Path(model_config['parameters']['tokenizer_dir']['string_value'])
tokenizer_path = tokenizer_dir.joinpath("tokenizer.json")
pad_to_multiple_of = int(model_config['parameters']['pad_to_multiple_of']['string_value'])
special_tokens_map_path = tokenizer_dir.joinpath("special_tokens_map.json")
with open(special_tokens_map_path, "r", encoding="utf-8") as special_tokens_f:
special_tokens_map = json.load(special_tokens_f)
self.tokenizer = Tokenizer.from_file(str(tokenizer_path))
if "eos_token" in special_tokens_map:
eos_token = special_tokens_map["eos_token"]["content"]
eos_token_id = self.tokenizer.encode(eos_token, add_special_tokens=False).ids[0]
# self.tokenizer.enable_padding(
# direction="left", pad_id=eos_token_id, pad_token=eos_token, pad_to_multiple_of=pad_to_multiple_of
# )
self.pad_token = eos_token
self.pad_token_id = eos_token_id
# Parse model output configs and convert Triton types to numpy types
for name in INPUT_NAMES:
dtype = pb_utils.triton_string_to_numpy(
pb_utils.get_output_config_by_name(model_config, name)['data_type']
)
setattr(self, name.lower() + "_dtype", dtype)
def execute(self, requests: Sequence):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests`
"""
responses = []
# Every Python backend must iterate over every request
# and create a pb_utils.InferenceResponse for each of them.
for request in requests:
response = self.handle_request(request)
responses.append(response)
# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary cleanup before exit.
"""
print('Cleaning up...')
def handle_request(self, request: Sequence):
# Get input tensors
query = pb_utils.get_input_tensor_by_name(request, 'QUERY').as_numpy().item().decode("utf-8")
request_output_len = pb_utils.get_input_tensor_by_name(request, 'REQUEST_OUTPUT_LEN')
# bad_words_dict = pb_utils.get_input_tensor_by_name(request, 'BAD_WORDS_DICT').as_numpy().item()
# stop_words_dict = pb_utils.get_input_tensor_by_name(request, 'STOP_WORDS_DICT').as_numpy().item()
# Preprocessing input data.
# input_id, request_input_len = self._create_request(query)
encoding = self.tokenizer.encode(query)
# bad_words = self._to_word_list_format(bad_words_dict)
# stop_words = self._to_word_list_format(stop_words_dict)
# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
bad_words_ids = pb_utils.Tensor('BAD_WORDS_IDS', np.array([[], []], dtype=self.bad_words_ids_dtype))
stop_words_ids = pb_utils.Tensor('STOP_WORDS_IDS', np.array([[], []], dtype=self.stop_words_ids_dtype))
input_ids = pb_utils.Tensor('INPUT_ID', np.array([encoding.ids], dtype=self.input_id_dtype))
request_input_len = pb_utils.Tensor(
'REQUEST_INPUT_LEN', np.array([[len(encoding.ids)]], dtype=self.request_input_len_dtype)
)
# Create InferenceResponse. You can set an error here in case
# there was a problem with handling this inference request.
# Below is an example of how you can set errors in inference
# response:
#
# pb_utils.InferenceResponse(
# output_tensors=..., TritonError("An error occurred"))
return pb_utils.InferenceResponse(output_tensors=[
input_ids, bad_words_ids, stop_words_ids, request_input_len, request_output_len
])
def _to_word_list_format(self, word_dict: List[List[str]]):
'''
format of word_dict
len(word_dict) should be same to batch_size
word_dict[i] means the words for batch i
len(word_dict[i]) must be 1, which means it only contains 1 string
This string can contain several sentences and split by ",".
For example, if word_dict[2] = " I am happy, I am sad", then this function will return
the ids for two short sentences " I am happy" and " I am sad".
'''
assert self.tokenizer != None, "need to set tokenizer"
flat_ids = []
offsets = []
for word_dict_item in word_dict:
item_flat_ids = []
item_offsets = []
if isinstance(word_dict_item[0], bytes):
word_dict_item = [word_dict_item[0].decode()]
words = list(csv.reader(word_dict_item))[0]
for word in words:
ids = self.tokenizer.encode(word)
if len(ids) == 0:
continue
item_flat_ids += ids
item_offsets.append(len(ids))
flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))