def _launch_time()

in optimum/onnxruntime/runs/__init__.py [0:0]


    def _launch_time(self, trial):
        batch_size = trial.suggest_categorical("batch_size", self.batch_sizes)
        input_length = trial.suggest_categorical("input_length", self.input_lengths)

        model_input_names = set(self.preprocessor.model_input_names)

        # onnxruntime benchmark
        print("Running ONNX Runtime time benchmark.")
        ort_benchmark = TimeBenchmark(
            self.ort_model,
            input_length=input_length,
            batch_size=batch_size,
            model_input_names=model_input_names,
            warmup_runs=self.time_benchmark_args["warmup_runs"],
            duration=self.time_benchmark_args["duration"],
        )
        optimized_time_metrics = ort_benchmark.execute()

        # pytorch benchmark
        print("Running Pytorch time benchmark.")
        torch_benchmark = TimeBenchmark(
            self.torch_model,
            input_length=input_length,
            batch_size=batch_size,
            model_input_names=model_input_names,
            warmup_runs=self.time_benchmark_args["warmup_runs"],
            duration=self.time_benchmark_args["duration"],
        )
        baseline_time_metrics = torch_benchmark.execute()

        time_evaluation = {
            "batch_size": batch_size,
            "input_length": input_length,
            "baseline": baseline_time_metrics,
            "optimized": optimized_time_metrics,
        }

        self.return_body["evaluation"]["time"].append(time_evaluation)

        return 0, 0