def _save()

in optimum/onnxruntime/trainer.py [0:0]


    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")

        supported_classes = (PreTrainedModel,)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, supported_classes):
            if state_dict is None:
                state_dict = self.model.state_dict()

            if isinstance(self.accelerator.unwrap_model(self.model), supported_classes):
                self.accelerator.unwrap_model(self.model).save_pretrained(
                    output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
                )
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
                if self.args.save_safetensors:
                    safetensors.torch.save_model(
                        self.model, os.path.join(output_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"}
                    )
                else:
                    torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
        else:
            self.model.save_pretrained(
                output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
            )

        if self.processing_class is not None:
            self.processing_class.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))