in bench/generation/setup/hqq.py [0:0]
def setup(model_id: str, weights: str, activations: str, device: torch.device, group_size: int = 64):
if activations != "none":
raise ValueError("Activation quantization is not supported by HQQ")
if weights == "int4":
quant_config = BaseQuantizeConfig(nbits=4, group_size=group_size)
elif weights == "int8":
quant_config = BaseQuantizeConfig(nbits=8, group_size=group_size)
else:
raise ValueError("HQQ only supports int4 and int8 weights.")
# Load model
model = HQQModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
# Quantize
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16, device=device)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
return model, tokenizer