def quantization_map()

in optimum/quanto/quantize.py [0:0]


def quantization_map(model: torch.nn.Module) -> Dict[str, Dict[str, str]]:
    """Returns the quantization map of a module

    The quantization map is a dictionary of quantization parameters indexed
    by the module submodule names (including prefix).

    This is mainly used for serialization.

    Args:
        model (`torch.nn.Module`): the root module to map.

    Returns:
        a dictionary of quantization parameters indexed by layer names.
    """
    config = {}
    for name, m in model.named_modules():
        if isinstance(m, QModuleMixin):
            config[name] = {
                "weights": "none" if m.weight_qtype is None else m.weight_qtype.name,
                "activations": "none" if m.activation_qtype is None else m.activation_qtype.name,
            }
    return config