def save_to_state_dict()

in optimum/quanto/tensor/qtensor.py [0:0]


    def save_to_state_dict(self, destination, prefix, keep_vars):
        def serialize_tensor_subclass(t, destination, prefix, keep_vars):
            inner_tensors, meta = t.__tensor_flatten__()
            for name in inner_tensors:
                inner_tensor = getattr(t, name)
                if type(inner_tensor) is torch.Tensor:
                    # Leaf Tensor, we can serialize it
                    destination[prefix + name] = inner_tensor if keep_vars else inner_tensor.detach()
                else:
                    # Flatten also this inner Tensor
                    serialize_tensor_subclass(inner_tensor, destination, prefix + name + ".", keep_vars)

        # Recursively flatten QTensor into individual tensors
        serialize_tensor_subclass(self, destination, prefix, keep_vars)