bench/generation/evaluate_model.py (110 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
import torch
from datasets import load_dataset
from metrics.latency import latency
from metrics.perplexity import perplexity
from metrics.prediction import prediction_accuracy
if importlib.util.find_spec("awq") is not None:
from setup.awq import setup as awq_setup
if importlib.util.find_spec("bitsandbytes") is not None:
from setup.bnb import setup as bnb_setup
if importlib.util.find_spec("hqq") is not None:
from setup.hqq import setup as hqq_setup
from setup.quanto import setup as quanto_setup
from transformers import AutoConfig
@torch.no_grad()
def calibrate(model, tokenizer, batch_size, batches):
samples = batch_size * batches
cal_dataset = load_dataset("lambada", split=["validation"])[0]
model.eval()
total = 0
for batch in cal_dataset.iter(batch_size=batch_size):
inputs = tokenizer(batch["text"], return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(model.device)
attention_mask = inputs.attention_mask.to(model.device)
model(input_ids, attention_mask=attention_mask)
total += input_ids.size(0)
if total >= samples:
break
def evaluate(
model_id: str,
metric: str,
quantizer: str,
weights: str,
activations: str,
batch_size: int,
device: torch.device,
dtype: torch.dtype = None,
):
if quantizer == "quanto":
if dtype is None:
config = AutoConfig.from_pretrained(model_id)
dtype = getattr(config, "torch_dtype", torch.float16)
model, tokenizer = quanto_setup(model_id, weights, activations, batch_size, device, dtype)
elif quantizer == "awq":
model, tokenizer = awq_setup(model_id, weights, activations, group_size=128)
elif quantizer == "bnb":
model, tokenizer = bnb_setup(model_id, weights, activations, device)
elif quantizer == "hqq":
model, tokenizer = hqq_setup(model_id, weights, activations, device)
else:
raise ValueError(f"Unsupported quantizer {quantizer}")
dtype = next(model.parameters()).dtype
weights = dtype if weights == "none" else weights
activations = dtype if activations == "none" else activations
print(f"Evaluating {model_id} {metric} with {weights} weights and {activations} activations.")
if metric == "latency":
return latency(model, tokenizer, device, batch_size=1, prompt_length=512, nb_tokens=512, iterations=3)
elif metric == "prediction":
return prediction_accuracy(model, tokenizer, batch_size)
elif metric == "perplexity":
return perplexity(model, tokenizer)
def main():
parser = argparse.ArgumentParser(description="Evaluate quantized model metrics")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--model",
type=str,
default="facebook/opt-350m",
help="The name of the trained Model.",
)
parser.add_argument("--device", type=str, default=None, help="The device to use for generation.")
parser.add_argument("--metric", type=str, default="prediction", choices=["latency", "prediction", "perplexity"])
parser.add_argument("--quantizer", type=str, default="quanto", choices=["quanto", "awq", "bnb", "hqq"])
parser.add_argument(
"--weights",
type=str,
default="none",
choices=["none", "int4", "int8", "float8"],
)
parser.add_argument(
"--activations",
type=str,
default="none",
choices=["none", "int8", "float8"],
)
parser.add_argument("--batch_size", type=int, default=32, help="The batch size during evaluation.")
parser.add_argument(
"--dtype",
type=str,
default="none",
choices=["none", "fp16", "bf16"],
)
args = parser.parse_args()
torch.manual_seed(args.seed)
if args.device is None:
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
elif torch.xpu.is_available():
device = torch.device("xpu")
else:
device = torch.device("cpu")
else:
device = torch.device(args.device)
dtype = {"none": None, "fp16": torch.float16, "bf16": torch.bfloat16}[args.dtype]
evaluate(args.model, args.metric, args.quantizer, args.weights, args.activations, args.batch_size, device, dtype)
if __name__ == "__main__":
main()