bench/generation/setup/awq.py (52 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from awq import AutoAWQForCausalLM from transformers import AutoTokenizer def prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs): if past_key_values is not None: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs def setup(model_id: str, weights: str, activations: str, group_size: int = 64, version="GEMV_FAST"): if activations != "none": raise ValueError("Activation quantization is not supported by HQQ") if weights != "int4": raise ValueError("AWQ only supports int4 weights.") quant_config = {"zero_point": True, "q_group_size": group_size, "w_bit": 4, "version": version} # Load model model = AutoAWQForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = "left" # Quantize model.quantize(tokenizer, quant_config=quant_config) # We need to save otherwise it doesn't work quant_path = model_id.replace("/", "-") + f"_{group_size}_{version}" model.save_quantized(quant_path) # Reload model model = AutoAWQForCausalLM.from_quantized(quant_path) # Hack: force transformers 4.36.2 behaviour model.model.prepare_inputs_for_generation = prepare_inputs_for_generation # Hack because AWQ models are not transformers models model.device = next(model.parameters()).device return model, tokenizer