bench/generation/setup/quanto.py (55 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from optimum.quanto import Calibration, freeze, qfloat8, qint4, qint8, quantize
@torch.no_grad()
def calibrate(model, tokenizer, batch_size, batches):
samples = batch_size * batches
cal_dataset = load_dataset("lambada", split=["validation"])[0]
model.eval()
total = 0
for batch in cal_dataset.iter(batch_size=batch_size):
inputs = tokenizer(batch["text"], return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(model.device)
attention_mask = inputs.attention_mask.to(model.device)
model(input_ids, attention_mask=attention_mask)
total += input_ids.size(0)
if total >= samples:
break
def setup(
model_id: str,
weights: str,
activations: str,
batch_size: int,
device: torch.device,
dtype: torch.dtype,
):
weights = keyword_to_qtype(weights)
activations = keyword_to_qtype(activations)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, low_cpu_mem_usage=True).to(device)
if weights is not None or activations is not None:
print("Quantizing")
start = time.time()
quantization_root = model
if hasattr(model, "model"):
quantization_root = model.model
quantize(quantization_root, weights=weights, activations=activations)
if activations is not None:
print("Calibrating")
with Calibration():
calibrate(model, tokenizer, batch_size, batches=4)
print("Freezing")
freeze(model)
print(f"Finished: {time.time() - start:.2f}")
return model, tokenizer
def keyword_to_qtype(k):
return {
"none": None,
"int4": qint4,
"int8": qint8,
"float8": qfloat8,
}[k]