bench/kernels/benchmark_w4a16.py (123 lines of code) (raw):

# From: https://github.com/IST-DASLab/marlin/blob/master/bench.py import argparse import time import torch from optimum.quanto.tensor.weights.awq import AWQPackedTensor, AWQPacking from optimum.quanto.tensor.weights.marlin import marlin_permute from optimum.quanto.tensor.weights.marlin.int4 import MarlinInt4PackedTensor def benchmark(f, warmup=1, iter=10): for i in range(warmup + iter): f() # We do not synchronize here in order to hide the kernel launch overhead during benchmarkining as this will also # happen during realistic model inference as many launches are submitted to the kernel queue. if i == warmup - 1: torch.cuda.synchronize() tick = time.time() torch.cuda.synchronize() res = (time.time() - tick) / iter # Make sure there is enough to "cool down" the GPU in between benchmarks to avoid throttling for later runs when # we execute many benchmarks consecutively time.sleep(1.0) return res def get_problem(m, n, k, groupsize=128): dev = torch.device("cuda:0") A = torch.rand((m, k), dtype=torch.half, device=dev) B_4bit = torch.randint(0, 2**4, (n, k), dtype=torch.uint8, device=dev) B_awq = AWQPackedTensor.pack(B_4bit, packing=AWQPacking.V2)._data B_marlin = MarlinInt4PackedTensor.pack(B_4bit)._data B_ref = torch.rand((k, n), dtype=torch.half, device=dev) s = torch.rand((k // groupsize, n), dtype=torch.half, device=dev) / 2**4 s_marlin = marlin_permute(s) z = torch.randint(-(2 ** (4 - 1)), 2 ** (4 - 1), (k // groupsize, n), dtype=torch.int8, device=dev) sz = -z * s sz_marlin = marlin_permute(sz) torch.cuda.synchronize() return A, B_ref, B_awq, B_marlin, s, s_marlin, sz, sz_marlin def benchmark_dense(A, B, m, n, k): res = benchmark(lambda: torch.matmul(A, B)) return { "s": res, "TFLOP/s": 2 * A.numel() * n / res / 10**12, "GB/s": (2 * A.numel() + 2 * B.numel() + 2 * (m * n)) / res / 10**9, } def benchmark_awq(A, B, s, sz, m, n, k): res = benchmark( lambda: torch.ops.quanto.gemm_f16i4_awq(A, B, s, sz, rows=m, out_cols=n, in_cols=k, bits=4, group_size=128) ) return { "s": res, "TFLOP/s": 2 * (m * k) * n / res / 10**12, "GB/s": (2 * A.numel() + 2 * B.numel() + 2 * (m * n) + 2 * s.numel() + 2 * sz.numel()) / res / 10**9, } def benchmark_marlin(A, B, s, sz, m, n, k): workspace = torch.zeros(n // 128 * 16, dtype=torch.int, device=torch.device("cuda:0")) res = benchmark(lambda: torch.ops.quanto.gemm_f16i4_marlin(A, B, s, sz, workspace)) return { "s": res, "TFLOP/s": 2 * (m * k) * n / res / 10**12, "GB/s": (2 * A.numel() + 4 * B.numel() + 2 * (m * n) + 2 * s.numel() + 2 * sz.numel()) / res / 10**9, } MODELS = { "Llama7B": [(4096, 3 * 4096), (4096, 4096), (4096, 2 * 10752), (10752, 4096)], "Llama13B": [(5120, 3 * 5120), (5120, 5120), (5120, 2 * 13568), (13568, 5120)], "Llama33B": [(6656, 3 * 6656), (6656, 6656), (6656, 2 * 17664), (17664, 6656)], "Llama65B": [(8192, 3 * 8192), (8192, 8192), (8192, 2 * 21760), (21760, 8192)], "Falcon180B": [ # Note that parallel attention and FC allows layer fusions (14848, 14848 * 5 + 1024), (14848 * 5, 14848), ], } def run_benchmark(model, tokens=None): if tokens is None: tokens = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] elif not isinstance(tokens, (list, tuple)): tokens = [tokens] groupsize = 128 layers = MODELS[model] print(model) for m in tokens: tot_awq = {"s": 0, "TFLOP/s": 0, "GB/s": 0, "speedup": 0} tot_marlin = {"s": 0, "TFLOP/s": 0, "GB/s": 0, "speedup": 0} for layer in layers: k, n = layer A, B_ref, B_awq, B_marlin, s, s_marlin, sz, sz_marlin = get_problem(m, n, k, groupsize) res_d = benchmark_dense(A, B_ref, m, n, k) res_awq = benchmark_awq(A, B_awq, s, sz, m, n, k) res_awq["speedup"] = res_d["s"] / res_awq["s"] tot_awq["s"] += res_awq["s"] for key in tot_awq: if key != "s": tot_awq[key] += res_awq[key] * res_awq["s"] res_marlin = benchmark_marlin(A, B_marlin, s_marlin, sz_marlin, m, n, k) res_marlin["speedup"] = res_d["s"] / res_marlin["s"] tot_marlin["s"] += res_marlin["s"] for key in tot_marlin: if key != "s": tot_marlin[key] += res_marlin[key] * res_marlin["s"] for key in tot_awq: if key != "s": tot_awq[key] /= tot_awq["s"] for key in tot_marlin: if key != "s": tot_marlin[key] /= tot_marlin["s"] print( "AWQ, tokens=%04d: s=%.5f, TFLOP/s=%07.3f, GB/s=%08.3f, speedup=%.2f" % (m, tot_awq["s"], tot_awq["TFLOP/s"], tot_awq["GB/s"], tot_awq["speedup"]) ) print( "Marlin, batch=%04d: s=%.5f, TFLOP/s=%07.3f, GB/s=%08.3f, speedup=%.2f" % (m, tot_marlin["s"], tot_marlin["TFLOP/s"], tot_marlin["GB/s"], tot_marlin["speedup"]) ) def main(): parser = argparse.ArgumentParser(description="W4A16 Matrix Multiplication Kernel benchmark") parser.add_argument( "--model", type=str, default=None, help="The model configuration to benchmark. None to test all of them." ) parser.add_argument( "--tokens", type=int, default=None, help="The numbers of input tokens used to benchmark. None to test a predefined range.", ) args = parser.parse_args() models = MODELS if args.model is None else [args.model] for model in models: run_benchmark(model, args.tokens) print() if __name__ == "__main__": main()