optimum/quanto/library/extensions/hip/unpack.cu (77 lines of code) (raw):

// Copyright 2024 The HuggingFace Team. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <torch/extension.h> #include <cuda.h> #include <cuda_runtime.h> #include <c10/cuda/CUDAException.h> inline unsigned int cdiv(unsigned int a, unsigned int b) { return (a + b - 1) / b;} #define BLOCK_SIZE 256 using namespace at; static torch::Tensor allocate_output(const torch::Tensor& input, int bits) { int n_packed = 8 / bits; auto output_shape = input.sizes().vec(); output_shape[0] = output_shape[0] * n_packed; return torch::empty(output_shape, input.options()); } __global__ void unpack_4bit_kernel(unsigned char* input, unsigned char* output, int n) { int i = blockIdx.x*blockDim.x + threadIdx.x; if(i>=n) return; output[i] = (input[i] & 0x0F); output[i + n] = (input[i] & 0xF0) >> 4; } static torch::Tensor unpack_4bit(const torch::Tensor& input){ auto output = allocate_output(input, 4); const auto numel = input.numel(); int blocks = cdiv(numel, BLOCK_SIZE); unpack_4bit_kernel<<<blocks, BLOCK_SIZE>>>( input.data_ptr<unsigned char>(), output.data_ptr<unsigned char>(), numel ); C10_CUDA_KERNEL_LAUNCH_CHECK(); return output; } __global__ void unpack_2bit_kernel(unsigned char* input, unsigned char* output, int n) { int i = blockIdx.x*blockDim.x + threadIdx.x; if(i>=n) return; output[i] = (input[i] & 0x03); output[i + n] = (input[i] & 0x0C) >> 2; output[i + n*2] = (input[i] & 0x30) >> 4; output[i + n*3] = (input[i] & 0xC0) >> 6; } static torch::Tensor unpack_2bit(const torch::Tensor& input){ auto output = allocate_output(input, 2); const auto numel = input.numel(); int blocks = cdiv(numel, BLOCK_SIZE); unpack_2bit_kernel<<<blocks, BLOCK_SIZE>>>( input.data_ptr<unsigned char>(), output.data_ptr<unsigned char>(), numel ); C10_CUDA_KERNEL_LAUNCH_CHECK(); return output; } torch::Tensor unpack(torch::Tensor &t, int bits) { TORCH_CHECK(t.scalar_type() == torch::kUInt8, "Unsupported data type: ", t.scalar_type()); TORCH_CHECK(t.device().is_cuda(), "t must be a CUDA tensor."); TORCH_CHECK(t.is_contiguous(), "t must be contiguous."); switch(bits) { case 4: return unpack_4bit(t); case 2: return unpack_2bit(t); default: throw std::invalid_argument("Can only unpack 2-bit or 4-bit tensors."); } }