optimum/quanto/models/transformers_models.py (105 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from pathlib import Path from typing import Any, List, Optional, Union from huggingface_hub import ModelHubMixin, snapshot_download from ..nn import QModuleMixin from ..quantize import Optimizer, freeze, qtype, quantization_map, quantize, requantize from . import is_transformers_available from .shared_dict import ShardedStateDict __all__ = ["QuantizedTransformersModel", "QuantizedModelForCausalLM"] if not is_transformers_available(): raise ImportError(f"{__all__} require the transformers library") from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available class QuantizedTransformersModel(ModelHubMixin): BASE_NAME = "quanto" auto_class = None def __init__(self, model: PreTrainedModel): if not isinstance(model, PreTrainedModel) or len(quantization_map(model)) == 0: raise ValueError("The source model must be a quantized transformers model.") self._wrapped = model def __getattr__(self, name: str) -> Any: """If an attribute is not found in this class, look in the wrapped module.""" try: return super().__getattr__(name) except AttributeError: wrapped = self.__dict__["_wrapped"] return getattr(wrapped, name) def forward(self, *args, **kwargs): return self._wrapped.forward(*args, **kwargs) def __call__(self, *args, **kwargs): return self._wrapped.forward(*args, **kwargs) def __repr__(self): return self._wrapped.__repr__() @staticmethod def _qmap_name(): return f"{QuantizedTransformersModel.BASE_NAME}_qmap.json" @classmethod def quantize( cls, model: PreTrainedModel, weights: Optional[Union[str, qtype]] = None, activations: Optional[Union[str, qtype]] = None, optimizer: Optional[Optimizer] = None, include: Optional[Union[str, List[str]]] = None, exclude: Optional[Union[str, List[str]]] = None, ): """Quantize the specified model By default, each layer of the model will be quantized if is quantizable. If include patterns are specified, the layer name must match one of them. If exclude patterns are specified, the layer must not match one of them. Include or exclude patterns are Unix shell-style wildcards which are NOT regular expressions. See https://docs.python.org/3/library/fnmatch.html for more details. Note: quantization happens in-place and modifies the original model. Note that the resulting quantized model will be frozen: if you wish to do quantization-aware training then you should use `optimum.quanto.quantize` instead, and call `optimum.quanto.freeze` only after the training. Args: model (`PreTrainedModel`): the model to quantize. weights (`Optional[Union[str, qtype]]`): the qtype for weights quantization. activations (`Optional[Union[str, qtype]]`): the qtype for activations quantization. include (`Optional[Union[str, List[str]]]`): Patterns constituting the allowlist. If provided, layer names must match at least one pattern from the allowlist. exclude (`Optional[Union[str, List[str]]]`): Patterns constituting the denylist. If provided, layer names must not match any patterns from the denylist. """ if not isinstance(model, PreTrainedModel): raise ValueError("The source model must be a transformers model.") quantize( model, weights=weights, activations=activations, optimizer=optimizer, include=include, exclude=exclude ) freeze(model) return cls(model) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs): if cls.auto_class is None: raise ValueError( "Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead." ) if not is_accelerate_available(): raise ValueError("Reloading a quantized transformers model requires the accelerate library.") from accelerate import init_empty_weights if os.path.isdir(pretrained_model_name_or_path): working_dir = pretrained_model_name_or_path else: working_dir = snapshot_download(pretrained_model_name_or_path, **kwargs) # Look for a quantization map qmap_path = os.path.join(working_dir, cls._qmap_name()) if not os.path.exists(qmap_path): raise ValueError( f"No quantization map found in {pretrained_model_name_or_path}: is this a quantized model ?" ) with open(qmap_path, "r", encoding="utf-8") as f: qmap = json.load(f) # Create an empty model config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) with init_empty_weights(): model = cls.auto_class.from_config(config) # Look for the index of a sharded checkpoint checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_INDEX_NAME) if os.path.exists(checkpoint_file): # Convert the checkpoint path to a list of shards checkpoint_file, sharded_metadata = get_checkpoint_shard_files(working_dir, checkpoint_file) # Create a mapping for the sharded safetensor files state_dict = ShardedStateDict(working_dir, sharded_metadata["weight_map"]) else: # Look for a single checkpoint file checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_NAME) if not os.path.exists(checkpoint_file): raise ValueError(f"No safetensor weights found in {pretrained_model_name_or_path}.") # Get state_dict from model checkpoint state_dict = load_state_dict(checkpoint_file) # Requantize and load quantized weights from state_dict requantize(model, state_dict=state_dict, quantization_map=qmap) if getattr(model.config, "tie_word_embeddings", True): # Tie output weight embeddings to input weight embeddings # Note that if they were quantized they would NOT be tied model.tie_weights() # Set model in evaluation mode as it is done in transformers model.eval() return cls(model) def _save_pretrained(self, save_directory: Path) -> None: model = self._wrapped if getattr(model.config, "tie_word_embeddings", True): # The original model had tied embedding inputs and outputs if isinstance(model.get_input_embeddings(), QModuleMixin) or isinstance( model.get_output_embeddings(), QModuleMixin ): # At least one of the two is quantized, so they are not tied anymore model.config.tie_word_embeddings = False self._wrapped.save_pretrained(save_directory, safe_serialization=True) # Save quantization map to be able to reload the model qmap_name = os.path.join(save_directory, self._qmap_name()) qmap = quantization_map(self._wrapped) with open(qmap_name, "w", encoding="utf8") as f: json.dump(qmap, f, indent=4) class QuantizedModelForCausalLM(QuantizedTransformersModel): auto_class = AutoModelForCausalLM